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Abstract: When adverse aviation events occur, narrative reports describing the events and their 

associated flights provide a valuable record for improving safety. Manual examination of large 

collections of such reports is challenging. Tools for automated event classification can help to 

mitigate this challenge. Event classification involves the assignment of type labels to individual 

reports indicating all the types of events that are described in the report. While several studies 

have developed and systematically empirically evaluated event classification tools on English 

aviation narratives, we are not aware of any that have done the same on foreign language 

narratives. We developed and implemented an approach for event classification based on 

Bayesian logistic regression and a novel feature selection technique. For comparison purposes, 

we also implemented an approach described in the literature. We collected and annotated a 

corpus of Japanese aviation incident reports, as well as, a corpus of French incident reports. We 

carried out a series of experiments comparing the accuracy of our approach and the other 

approach. On the Japanese dataset, our approach exhibited greater accuracy for all event types 

considered. On the French dataset, our approach exhibited greater accuracy for two of four 

event types and worse for the other two.  

1. Introduction 

Safety is of paramount importance in the commercial airline industry. When adverse events 

occur during a flight, narrative reports describing the events and their associated flights 

provide a valuable record for improving safety. By examining large collections of these reports, 

analysts can better understand the causes of the events. For example, analysts can characterize 

the factors that contribute to specific types of events, e.g. factors contributing to loss of control 

of the aircraft. However, the large number of reports motivates the need for automated text 

analysis capabilities to assist the analyst. One such capability is automated event classification – 

the assignment of type labels to individual reports indicating all the types of events that are 

described in the report. This capability can help an analyst to focus attention on a subset of 

reports relevant to the events of interest [1]. While several studies have developed event 

classification tools and carried out a detailed and systematic empirical evaluation of them on 

English aviation narratives, we are not aware of any that have done the same on foreign 

language narratives. Since many airlines and governments generate foreign language aviation 

narratives, the development and empirical evaluation of event classification tools on foreign 

language narratives is warranted.   
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1.1   The Event Types 

We developed the two-level event type hierarchy depicted in Figure 1 based on the main top 

categories proposed by the International Civil Aviation Organization / Commercial Aviation 

Safety Team (ICAO/CAST)1. Due to the modest sizes of our datasets, we use the five top level 

types, hereafter referred to as “event types”. A detailed discussion of the event type hierarchy 

can be found in the Appendix. 

 

FIGURE 1: Event Type Hierarchy 

1.2  The Problem, Our Approach and Contributions 

Let Φ denote a subset of the five event types and {(D1,T1), …,(Dn,Tn)} denote a training dataset. 

Di is a foreign language aviation report and Ti is a subset of Φ such that, for each event type t 

in Ti, the narrative in Di implies that an event of type t occurred. The problem is to build a 

classifier that maps new reports D to sets of event types T ⊆ Φ such that for each event type t in 

T, the narrative in D implies that an event of type t occurred. We refer to this as the aviation 

event multi-label classification problem – “multi-label” because reports can be mapped to zero, 

one, or more event types.  

The aviation event multi-label classification problem is an example of a multi-label learning 

problem, a topic that has been addressed in the Machine Learning literature. One simple 

approach to multi-label learning, called one-versus-all, is to build one binary classifier for each 

event type, then given a new report, assign each type whose classifier returns true. This 

approach is referred to as a first-order strategy since the assignment of the types are made 

 
1 http://www.icao.int/APAC/Meetings/2012_APRAST1/OccurrenceCategoryDefinitions.pdf 
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independently. Other kinds of first-order strategies, as well as, higher-order strategies have 

been developed. The reader is referred to [2] for an extensive survey of multi-label learning 

approaches. 

We employ a simple one-versus-all approach to address the aviation event multi-label 

classification problem. We build a multi-label classifier from the training data 

{(D1,T1),…,(Dn,Tn)} as follows. For each event type t that appears in the training data:  

1. A binary training dataset {(D1,[t±]1), …,(Dn, [t±]n)} is created where [t±]i is +1 if t is in Ti, 

else [t±]i is -1, i.e., “+1” denotes the positive label indicating that t is in Ti. 

2. From the binary training dataset, a binary report classifier is trained – see Section 2 for 

details. Let Ct denote the classifier.  

A new report, D, is mapped to the following set of types: {t in Φ: t appears in the training 

dataset and Ct[D] = +1} where Ct[D] denotes the label assigned to D by Ct.   

We develop a novel Bayesian logistic regression algorithm for binary text classification. The 

primary novelty of our approach is the feature selection procedure designed to mitigate the 

deleterious effects of imbalanced training data. We utilize this binary text classification 

algorithm, in one-versus-all fashion, to address the aviation event multi-label classification 

problem. We collect and annotate Japanese and French aviation reports and perform 

experiments to evaluate the accuracy of our approach as compared with an approach described 

in [3]. Ours is the first study in which an aviation event multi-label classifier is developed and 

systematically empirically evaluated on foreign language aviation incident reports. 

2. Binary Report Classification  

Here we describe our approach to building a classifier from a binary training dataset {(D1,[t±]1), 

…,(Dn,[t±]n)} – an extensively studied problem [4]. 

Let V denote a list of all unique terms (token unigrams and bigrams) that appear in any of the 

reports D1,…,Dn. V is the universe of all possible features. Each report Di is mapped to a 

Boolean vector, Xi, of length |V| such that Xi[k] = 1 if the kth term in V appears in Di, else Xi[k] = 

0. In effect, Di is represented as a bag of terms. 

The first subsection below describes a version of Bayesian logistic regression that is the corner-

stone of our classification approach. The next subsection describes the feature selection 

procedure we employ. The final subsection describes our entire classification approach – both 

training and application.  

2.1  Adaptive, Laplacian Prior, Bayesian Logistic Regression 

The standard logistic regression model with |V| Boolean dependent variables maps a label y in 

{+1,-1} and a length |V| Boolean vector, Z, to a probability 
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Pβ,b(y|Z)≝
1

1+exp(−yb − yβ
T
Z)

 

where b denotes the bias coefficient and β denotes the term coefficients. A two-level Bayesian 

approach is employed to set coefficient b and set coefficient vector β from a training dataset 

with N labeled vectors: {(Z1,y1),…,(ZN,yN)} with each yi either +1 or -1. The aim is to maximize 

the posterior distribution with the following prior on the coefficients and the following hyper-

prior on the hyper-parameter λ:  

L [0,2λ
2

] (b) ∏ L [0,2 λ
2

wk
2

⁄ ]

|V|

k=1

(βk) and G[0.001,0.001] (λ
2

) 

where L[0,2a2](x) denotes the value at x of the Laplace distribution with mean zero and variance 

a2 [5]; βk denotes the kth component of β; wk denotes a fixed weight; and, G[0.001,0.001](x) 

denotes the value at x of the Gamma distribution with shape and rate parameters 0.001. The 

weight parameters will be instrumental in the feature selection procedure (described later), but 

are treated as constants here. The weights allow shrinkage effects to be individually adjusted 

for the coefficients in β – hence the use of the term “adaptive”. Details regarding how the 

weights are fixed can be found at the end of this subsection. The aim can be equivalently stated 

as jointly maximizing the following expression for b, β and λ.   

∑ log10 (Pβ,b(yi|Zi))

N

i=1

+ log10(L[0,2λ2](b)) + ∑ log10(L[0,2 λ2 wk2⁄ ](βk))

|V|

k=1

+ log10(G[0.001,0.001](λ2)) . 

To avoid the Gamma hyper-prior overwhelming the log-likelihood (the first summation), λ is 

bounded below by a fixed constant α > 0. The coefficient b and vector of coefficients β are set 

by solving: 

maxb,β,λ {∑ log10 (Pβ,b(yi|Zi))

N

i=1

+ log10(L[0,2λ2](b)) + ∑ log10(L[0,2 λ2 wk2⁄ ](βk))

|V|

k=1

+ log10(G[0.001,0.001](λ2))} 

subject to: λ > α.                                                                                                                                           

This constrained optimization problem is solved using the R function nloptr_ld_mma which 

implements a variant of the Method of Moving Asymptotes [6].  

Fixing the weights: As argued in [7], the use of the Laplacian prior promotes feature selection. 

The coefficients on irrelevant variables tend to be driven to zero during optimization 

(coefficient shrinkage). The weights enhance this effect - making wk smaller tends to dampen 

the shrinkage on βk. By default, the weights are set to one. Some variables have their weights 

heuristically reduced in order to dampen shrinkage on those variables’ coefficients. These are 

the variables whose entry is one only in positively labeled vectors or is one only in negatively 

labeled vectors. The weight decrease for each of these variables depends on the number of 

vectors whose entry is one. Precisely stated, the weight wk assigned to the kth variable is: 
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c+(k)≝|{Zi:1≤i≤n and yi=+1 and Zi[k]=1}| 

c-(k)≝|{Zi:1≤i≤n and yi=-1 and Zi[k]=1}| 

wk≝ {

1 min{log
10

[c+(k)+9] , log
10

400}⁄            if c+(k)>0 and c-(k)=0

1 min{log
10

[c-(k)+9] , log
10

400}⁄              if c-(k)>0 and c+(k)=0 

1                                  otherwise.

 

2.2  Feature Selection 

Since aviation adverse events are uncommon, the training dataset is typically imbalanced: it has 

more negatively labeled vectors than positively labeled ones. Training a classifier from an 

imbalanced dataset can be problematic. One such problem stems from discriminative terms 

that are prevalent in the negatively labeled vectors close to the decision boundary. These terms 

are important in classifying the “difficult” negatively labeled vectors. However, the 

discriminative effect of these terms might be dampened by the larger number of discriminative 

terms that are only prevalent in the negatively labeled vectors not close to the decision 

boundary. To avoid dampening the effect of the negative discriminative terms close to the 

boundary, a subset of negatively labeled vectors are selected – those deemed close to the 

boundary. These vectors, along with all of the positively labeled ones are used to select features 

through coefficient shrinkage.    

Example: Suppose the type t is runway excursion and the term “runway excursion” is positively 

significant - the term occurs more in the positively labeled vectors than the negatively labeled 

ones. Further suppose a negatively labeled report contains the phrase “a runway excursion did 

not occur”. Selecting the vector corresponding to this report can help the training process to 

key in on important negatively discriminating terms such as “not occur” which helps to produce 

a classifier that will avoid mistakenly labeling this vector as positive despite the presence of the 

term “runway excursion”.  

The feature selection algorithm: Given the bag-of-terms training dataset for type t, 

{(X1,[t±]1),…,(Xn,[t±]n)}, a subset of terms Ωt is selected from V. First, the weights are 

computed as described at the end of the previous subsection but with {(Z1,y1),…,(ZN,yN)} = 

{(X1,[t±]1),…,(Xn,[t±]n)}.   

Next, a subset of negatively labeled vectors is selected.  Namely, those negatively labeled 

vectors Xi such that: there exists 1≤k≤|V| such that Xi[k]=1 and c+(k) > c-(k). Let 

{(Xi1,[t±]i1),…,(Xis,[t±]is)} denote all of the positively labeled vectors and the selected negatively 

labeled ones (s vectors in total).  

Next, the training dataset, {(X1,[t±]1),…,(Xn,[t±]n)}, is modified to remove all terms that are in a 

selected negatively labeled vector and are not positively significant with respect to 

{(Xi1,[t±]i1),…,(Xis,[t±]is)}. Specifically, for each 1≤k≤|V|, if  

ĉ-(k)>0 and c+(k)≤ĉ-(k), where: 



Approved for Public Release Distribution Unlimited. 15-2364;     ©2015-The MITRE Corporation. All rights reserved. 

 

 
 

ĉ-(k)≝|{Xij:1≤j≤s and [t±]ij=-1 and Xij[k]=1}|, 

then Xi[k] is set to 0 for all 1≤i≤n. 

Next, the term coefficients β are set using the procedure from Subsection 2.1 with 

{(Z1,y1),…,(ZN,yN)} = {(Xi1,[t±]i1),…,(Xis,[t±]is)} and α fixed as: 

α ≝ {√max{1 log10|V|⁄ , 1 log10 s⁄ }             if |{ij:1≤j≤s, yij=+1}| < |{ij:1≤j≤s, yij=-1}| and |V|,s>10 

1                                                                                                    otherwise.
 

Finally, for each 1≤k≤|V|, the kth term in V is added to Ωt if |βk| > 0.0001. Intuitively, Ωt 

contains only those terms whose coefficient is sufficiently far away from zero.  

2.3  Entire Classification Algorithm 

Application: Given β and b, a report D is classified with respect to type t as follows.  

1. D is mapped to X, a length |V| Boolean vector as described earlier.2  

2. If Pβ,b(+1|X) > 0.5, then D is assigned label +1, else -1.  

Training: To train a binary report classifier from the binary training dataset for type t 

{(D1,[t±]1),…,(Dn,[t±]n)}, the bias coefficient b and term coefficients β must be set. The 

following algorithm is carried out to do so. Steps 1-3 were discussed in the previous two 

subsections. Step 4, a bias adjustment step, takes affect when the number of negatively labeled 

reports is larger than the number of positively labeled ones. In this case, the separating 

boundary tends to be pushed towards the positive set resulting in reduced recall. The bias 

adjustment aims to improve recall by sacrificing a small amount of precision. 

1. The list of unique terms V is created and each Di is mapped to a length |V| Boolean vector Xi 

as described at the beginning of Section 2. The result is a bag-of-terms training dataset for 

type t, {(X1,[t±]1),…,(Xn,[t±]n)}.  

2. A subset of terms Ωt is selected from V as described in Subsection 2.2 and all the other 

terms are removed from the training dataset. Specifically, for all 1≤k≤|V|, if the kth term in 

V does not appear in Ωt, then Xi[k] is set to 0 for all 1≤i≤n. 

3. The bias coefficient b and |V| term coefficients β are set as described in Subsection 2.2 with 

α=1 and {(Z1,y1),…,(ZN,yN)} = {(X1,[t±]1),…,(Xn,[t±]n)}. If the kth term in V does not appear 

in Ωt, then βk will be set to zero during optimization. 

4. If ratio=|{i:1≤i≤n, [t±]i=-1}|/|{i:1≤i≤n, [t±]i=+1}| > 1, then the bias coefficient b is adjusted 

as follows. 

a. Set b̂ to 0. 

b. Carry out ⌈100 log10 ratio⌉+1 iterations: 

 
2 Terms in D that do not appear in V are ignored. 
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1st) Set TP, FP, FN to 0. For i=1 to n: if Pβ,(b+b̂)(+1|Xi)>0.5 and [t±]i=+1, 

increment TP; if Pβ,(b+b̂)(+1|Xi)>0.5 and [t±]i=-1, increment FP; if 

Pβ,(b+b̂)(+1|Xi)≤0.5 and [t±]i=+1, increment FN. Compute the F score.  

2nd) Set b̂ to min{b̂+0.05,log10 ratio}. 

c. Add to b the b̂ that produced the highest F score. 

 

3. Experiments 

3.1  Data 

We downloaded Japanese and French aviation reports from two sources. 

• The Japanese Transport Safety Board (JTSB), aircraft accident and incident reports.3  

• The French Office of Investigations and Analysis for Civil Aviation Safety.4 

The reports were all pdf files and we were able to extract the text from only a subset of them. 

The Japanese reports each had an accompanying English translation (manually produced by the 

JTSB). Using these translations, a MITRE colleague (Vanesa Jurica) annotated all of the Japanese 

reports using the five event types (recall a report can be assigned more than one event type). 

One of the authors (Megerdoomian) reads French and annotated a subset of the French reports.  

For the purposes of classification we only used part of the reports. From the Japanese reports, 

we only used the text in the “Summary of Serious Incident” section for serious incident reports, 

or only the text in the “History of the Flight” section for all other reports. From the French 

reports, we only used the text in the “Circonstances” Section.  

In all reports, we replaced all digits (0-9) with the character d. For the Japanese reports, we 

used the tokenizer provided by Lucene 5.0.0 analyzers-kuromoji 

(http://lucene.apache.org/core/5_0_0/analyzers-kuromoji/index.html). For the French reports, 

we used the tokenizer provided in the Stanford University core NLP open source library version 

3.3.1 (http://nlp.stanford.edu/software/corenlp.shtml), we lowercased all tokens, and dropped 

all tokens that appeared in a stop-word5 list. Figure 2 provides statistics regarding the datasets.  

 

 

JAPANESE FRENCH 

Total number of reports 110 206 

Avg. (stan. dev.) report size in tokens  262 (292) 437 (204) 

Number of reports with 1 assigned types 91 121 

Number of reports with 2 assigned types 19 67 

Number of reports with 3 assigned types 0 15 

Number of reports with 4 assigned types 0 3 

 
3 http://www.mlit.go.jp/jtsb/airrep.html 
4 http://www.bea.aero/en/index.php 
5 The stop-word list contained 463 words. 

http://lucene.apache.org/core/5_0_0/analyzers-kuromoji/index.html
http://nlp.stanford.edu/software/corenlp.shtml
http://www.mlit.go.jp/jtsb/airrep.html
http://www.bea.aero/en/index.php
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Number of reports with assigned type 

Loss of Separation 24 46 

Deviation & ATC Anomalies 3 13 

Ground & Landing Events 61 164 

Loss of Control 4 45 

Other 37 44 

FIGURE 2: Japanese & French Datasets 

3.2  Baseline Approach 

For comparison purposes, we implemented an approach very similar to the inductive Support 

Vector Machine (SVM) approach described in Sections 5.2.2 and 6.4.1 of [3]. In one-versus-all 

fashion, this approach builds a binary report classifier for each event type t. Given a binary 

training dataset {(D1,[t±]1), …,(Dn, [t±]n)}, the universe of all terms, V, is computed. As 

discussed in Section 2, each report Di is mapped to a Boolean vector, Xi, of length |V| resulting 

in a bag-of-terms training dataset {(X1,[t±]1),…,(Xn,[t±]n)}. 

1. The bag-of-terms training dataset is randomly split into pure training and development 

parts.  

a. 70 percent of the positively labeled vectors and 70 percent of the negatively labeled 

ones are selected and put into the pure training part.   

b. The remainder of the positively and negatively labeled vectors are put into the 

development part.   

2. Four parameters are chosen based on the pure training and development split: C 

(controlling the SVM error vs. margin trade-off), γ (controlling the radial basis function 

kernel), PT (the percentage of terms selected), and θ (the classification probability 

threshold).  

a. For each pair (C, γ) in {2-5,2-4,…,210,211}x{2-5,2-4,…,210,211}, an SVM model is built 

from the pure training part using all of the terms; the F score of this model (using 

classification probability threshold 0.5) is computed6 over the development part. The 

pair producing the highest F score is chosen (with ties broken by smaller 

parameters). Let C0 and γ0 denote the chosen parameters.  

b. For each pair (PT,θ) in {10,20..,100}x{0.05,0.1,…,0.95}, an SVM model is built from 

the pure training part using (C0,γ0) and the top PT percent of the terms with respect 

to their information gain; the F score of this model (using classification threshold θ) 

is computed over the development part. The pair producing the highest F score is 

chosen (with ties broken by larger parameters). Let PT0 and θ0 denote the chosen 

parameters. 

 
6 The SVM model is applied to each vector in the development part producing a probability for the label +1.  If this 
probability is greater than the classification probability threshold, then the vector is classified as +1, else -1.   
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3. An SVM model is built from the training dataset using (C0,γ0) and using the top PT0 percent 

of the terms with respect to information gain. When using this model to classify new 

vectors, θ0 is used as the classification probability threshold. 

In all cases, the Sequential Minimal Optimization (SMO) algorithm [8] is used to build SVM 

models. We used the SMO class in WEKA 3.6.10 [9] to build SVM models and to produce positive 

label probabilities when applying the models to reports. 

The SVM approach above to building binary report classifiers is similar, but not identical to the 

approach in [3]. We chose the optimal setting of the SVM model parameters, C and γ, by 

dividing the training data as pure train/development sets instead of applying cross-validation. 

Besides Ul Abedin, Ng, & Khan, 2010 do not discuss the ranges over which C and γ were varied. 

We classified new vectors by setting a positive threshold on the classification probabilities 

instead of setting a threshold on the raw scores (distance from the hyper-plane) from the SVM 

model. 

3.3  Methodology 

For each dataset (Japanese and French), we applied leave one out cross-fold validation on each 

event type, t, that occurred in at least 30 reports. Let Δ denote the full binary dataset for type t. 

Let Di and [t±]i denote the ith report and binary label; let Δ[-i] denote Δ with (Di, [t±]i) removed. 

1. Set TP[BLR], FP[BLR], FN[BLR], TP[SVM], FP[SVM], and FN[SVM] all to 0. 

2. For i=1 to n, do 

a. A binary classifier is built from Δ[-i] and applied to Di using the procedures 

described in Section 2 (our Bayesian Logistic Regression approach).  

i. If the classifier predicts label +1 and [t±]i is +1, then TP[BLR] is incremented. 

If the classifier predicts label +1 and [t±]i is -1, then FP[BLR] is incremented. 

If the classifier predicts label -1 and [t±]i is +1, then FN[BLR] is incremented.  

b. A binary classifier is built from Δ[-i] and applied to Di using the procedures 

described in Section 3.2 (the SVM approach).  

i. If the classifier predicts label +1 and [t±]i is +1, then TP[SVM] is 

incremented. If the classifier predicts label +1 and [t±]i is -1, then FP[SVM] is 

incremented. If the classifier predicts label -1 and [t±]i is +1, then FN[SVM] 

is incremented.  

3. The precision recall and F scores are computed from {TP[BLR], FP[BLR], FN[BLR]} and from 

{TP[SVM], FP[SVM], FN[SVM]}. 

4. Results 

In figures 3-6, BLR (Bayesian Logistic Regression) denotes the results of our approach and SVM 

denotes the results of the baseline approach. As seen in figure 3, the accuracy comparison 

between BLR and SVM yielded mixed results. On the Japanese dataset, BLR exhibited greater 
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accuracy (F score) for all event types considered. On the French dataset, BLR exhibited greater 

accuracy for two of four event types considered and worse for the other two. 

As seen in figures 4-6, BLR tends to exhibit more balance between precision and recall than 

SVM. This is by design and is usually preferred. Classifiers are built to maximize the area under 

the ROC curve. In BLR, this is achieved via adjusting the bias coefficient b such that we 

maximize the F score. In unbalanced data sets, the linear separating boundary tends to be 

pushed towards the smaller class (usually the positively labeled class) resulting in a very high 

precision and poor recall. Moving the separating boundary away from the smaller class results 

in trading a little bit of precision but gaining a much higher recall i.e., maximizing the F score. 

In some circumstances, recall may be weighted higher than precision, in which case the F score 

that weighs the recall higher should be used as the metric that is maximized. This is easily 

achieved in BLR by replacing the F score that balances precision and recall with an F score that 

weighs recall higher than precision. 

 

FIGURE 3: F Scores for All Event Types 

 

FIGURE 4: Precision and Recall for the Ground & Landing Event Type 
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FIGURE 5: Precision and Recall for the Other Event Type 

 

  

 

FIGURE 6: Precision and Recall for the Loss of Separation and Loss of Control Event Types 

5. Related Work 

5.1  Aviation Report Classification 

This work is a contribution to addressing the multi-label classification problem for aviation 

events. Literature discussing the analysis of aviation incidents based on non-narrative data, for 

example, [10], is beyond our scope. 

In [11] a one-versus-all semi-supervised approach automatically augments the labeled training 

reports using a bootstrapping method applied to a set of unlabeled reports. Pre-labeled reports 

determine terms that are highly indicative of an event type, then unlabeled reports with enough 

indicative terms are assigned an event-type label. These reports are added to the set of already 
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classifiers in a standard way. 
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In [3] several different approaches are developed. One approach applies a bootstrapping 

method to the labeled training data to automatically induce sets of indicative terms for each 

event type. Then, in one-versus-all fashion, a simple heuristic is used to label new documents 

based only on the indicative terms.  Two other approaches use two different multi-label 

learning strategies beyond one-versus-all (on top of statistical classification, rather than simple 

keyword heuristics).  As a base classifier in these approaches, several different kinds of SVMs 

are considered (including a transductive SVM, which can be considered semi-supervised).   

In [12] several one-versus-all approaches are developed to utilize annotator rationales in 

addition to the event type labels on the reports. These authors assume that the manual 

annotation of the training data assigns event types to the reports, as well as, identifies snippets 

of text in the reports that the annotator deems as rationales for assigning types. The idea being 

that the annotators highlight parts of the reports that were particularly influential in the 

assignment of event types.  This information, in addition to the event type labels themselves, is 

utilized in a variety of ways to train classifiers.   

In [1] several one-versus-all approaches are developed which modify simple word gram 

features by utilizing several kinds of automatically induced, simple semantic information. For 

example, the authors identify word collocations, pairs of words that tend to appear next to each 

other, and replace those with the concatenation of the constituent words. Also, the authors use 

part of speech information to add disambiguation information to words, e.g. pilot-NOUN vs. 

pilot-VERB. The authors use several other kinds of feature modifications of this nature. 

In [13] two one-versus-all approaches are developed. The first is a standard SVM but using 

simulated annealing to set the hyper-parameters. The second is based on non-negative matrix 

factorization (NMF). Through experiments they observe the SVM approach to outperform (by a 

small margin) the NMF-based approach. 

In [14] a semi-supervised clustering approach is developed.7 This approach creates a 

vocabulary by computing the information gain of all words in the labeled training reports and 

drops all but the top 1000 words. Each training report (labeled or not) is then mapped to a 

length 1000 Boolean vector whose ith entry is 1 if the report text contains the ith word, else the 

ith entry is 0. A soft clustering (with a fixed number of clusters) is computed over the labeled 

and unlabeled training reports. Associated with each cluster is a set of weights on the event 

types (the weights need not sum to one). This completes the training procedure (the event type 

classifier model is the soft clustering). To assign events to a new report (test report), the 

 
7 In multi-label learning terminology, this approach is considered a higher-order strategy since event type 
classifications are not made independently.  
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nearest cluster is found. The event type weights associated with this cluster are assigned to the 

new report. These weights are used to assign event types to the new report.8       

In [15] approaches are discussed for automatically classifying French aviation reports and 

finding reports that describe similar incidents. Regarding the classification approach9, the 

process of building a classifier from a manually annotated French aviation report corpus 

proceeds as follows. Phrases (e.g. “pilote automatique”) are identified using occurrence and 

parse information. Words and phrases are grouped into term categories using ontologies and 

expert knowledge (e.g. “PA” and “pilote automatique” are grouped together). For each event 

type and each term category, the conditional probability is estimated that a report contains a 

word or phrase in the term category given that the report was manually assigned the event 

type. Moreover, weights are assigned to each term category and a classification threshold is 

fixed for each event type. The conditional probability estimates, the weights, and the thresholds 

form the classifier. A new report is automatically assigned an event type if, for all term 

categories with a word or phrase contained in the report, the weighted sum of the conditional 

probabilities associated with the event type exceeds a fixed threshold. Pimm et al. discuss 

preliminary results of an empirical evaluation of the classification accuracy.         

5.2  Classification: Bayesian Logistic Regression and Class Imbalance 

Bayesian logistic regression: A number of studies have been published describing the 

application of Bayesian logistic regression to classify high-dimensional datasets (e.g. 

collections of text reports). A few of these studies are discussed here. The reader is referred to 

Section 5.1 of [16] for more background. 

In [17] and [18], a Bayesian logistic regression approach is developed for classifying high 

dimensional datasets emphasizing the use of a Laplace prior to address over-fitting (a problem 

made particularly acute by high-dimensional data). The hyper-parameter λ is set through 

cross-validation.    

In [19], a fully Bayesian logistic regression approach is developed for classifying high 

dimensional datasets. A Laplace prior is used and the hyper-parameter λ is integrated out 

analytically making use of an improper Jeffrey’s hyper-prior. Results from [20] are used to carry 

out the integration.  

In [21] adaptive, Laplacian prior, Bayesian linear regression is studied with extensions to logistic 

regression. That study provides a theoretical basis for the setting of the coefficient weights w, 

hence the use of the term “adaptive”.    

 
8 Ahmed et al. do not go into much detail here, so we are unclear as to how the nearest cluster is defined or how 
the event type weights on the new report are mapped to the assignment of event types (yes or no) to the report.   
9 Pimm et al. do not go into much detail so we are unclear as to the specifics of the classification approach and are 
speculating somewhat in our description. 
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Class imbalance: In situations where one class is significantly less common than the rest, 

classifiers can be prone to under-emphasize the rare class. This problem has been studied 

fairly extensively. The reader is referred to [22] for a survey of approaches in machine learning 

to account for class imbalance, as well as, [23] and [24] for recent work in the Statistics 

community on modified Bayesian logistic regression to account for class imbalance. 

In [25] an under-sampling approach is developed for binary classification based on SVMs. The 

key idea is that vectors from the common class that are closest to the decision boundary are 

more informative. For each positively labeled vector, the η nearest (in terms of weighted 

Euclidean distance) negatively labeled vectors are selected where η is a fixed constant (care is 

taken to avoid repetitive selection). 

5.3  Summary of Differences and Similarities Between Our Approach and the Literature 

Like the literature discussed in subsection 5.1, we address the aviation event multi-label 

classification problem. We employ a simple one-versus-all approach, unlike [14] and [3] which 

employ higher-order approaches. Unlike all the literature in subsection 5.1, except [15], we 

empirically evaluated our approach on foreign language aviation incident reports. Pimm et al., 

however, provide only sketchy empirical results do not report the outcome of a detailed and 

systematic study, as we do.   

Like the literature discussed in subsection 5.2, we develop a binary text classification approach. 

Like [17], we utilize Bayesian logistic regression with a Laplace prior. Unlike that paper, we set 

the hyper-parameter λ through joint maximization and a Gamma hyper-prior (rather than 

setting λ through cross-validation). Unlike [19], our approach is not fully Bayesian. In that 

paper, λ is analytically integrated out, thus no parameters need be set manually or through 

cross-validation. We place a Gamma hyper-prior on λ which, in turn, has hyper-parameters 

(shape and rate) that we manually set to 0.001. Like [25], we under-sample near the boundary 

to address class imbalance. 

Utilizing the theoretical results in [21] would be an interesting direction for future work. 

Specifically, develop and test an algorithm for setting the coefficient weights w in theoretically 

principled way, rather than heuristically as we do now.  

6. Conclusion 

We developed and implemented an approach, based on a Bayesian logistic regression algorithm 

for binary text classification, to address the aviation event multi-label classification problem. 

The primary novelty in our approach is the feature selection procedure. For comparison 

purposes, we implemented an approach similar to the SVM based approach described in 

Sections 5.2.2 and 6.4.1 of [3]. We collected and annotated French and Japanese aviation 

incident reports. We carried out a series of experiments comparing the accuracy of the two 

approaches. The results were mixed. On the Japanese dataset, our approach exhibited greater 

accuracy (F score) for all event types considered. On the French dataset, our approach exhibited 
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greater accuracy for two of four event types and worse for the other two. Our approach tends to 

exhibit more balance between precision and recall than the SVM based approach. 

Two avenues for future work seem promising, one algorithmic, the other empirical. The first 

would improve the binary classification algorithm by utilizing the results in [21] for setting 

coefficient weights in a theoretically principled way, rather than heuristically as we do now. The 

second is to improve experimental comparison by collecting and annotating larger foreign 

language aviation datasets.   

7. Appendix – Event Type Hierarchy Details 

Loss of Separation 

A loss of separation occurred whenever specified separation minima were breached. Minimum 

separation standards for airspace are specified by air traffic service authorities, based on ICAO 

standards. 

Airborne: This refers to a loss of radar separation involving instrument flight rules (IFR) aircraft, 

loss of separation involving visual flight rules (VFR) aircraft in airspace where minimum 

separation standards are prescribed, a suspected loss of separation involving formation flights, 

and a loss of separation involving non-radar standards. 

Ground: This refers to an aerodrome surface loss of separation, including any ground 

surveillance alert between two aircraft, any ground surveillance alert between an aircraft and a 

vehicle, any suspected loss of runway/airport surface separation between two aircraft, any 

suspected loss of runway/airport surface separation between an aircraft and a vehicle, or any 

suspected loss of runway/airport surface separation between an aircraft and a pedestrian. 

Terrain: This refers to a loss of separation between an IFR aircraft and terrain or obstacles (for 

example, operations below minimum vectoring altitude), or an incident involving a VFR aircraft 

in proximity to terrain or obstructions that the employee providing air traffic services 

determines affected the safety of flight. This category includes controlled flight into or toward 

terrain, namely, instances when an airworthy aircraft under the complete control of the pilot 

was (inadvertently) flown into or toward terrain, water, or an obstacle. 

Loss of Control 

A loss of control occurred whenever control of the aircraft was lost either terminally or 

transitorily. 

Airborne: This refers to loss of control while the aircraft was in flight -- a major cause of fatal 

aircraft accidents. 

Ground: This refers to loss of control while the aircraft was on the ground. 

Deviations and ATC Anomalies 
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Examples of deviations or air traffic control (ATC) anomalies include: an aircraft entered 

airspace on other than the expected or intended altitude; an aircraft operated at an altitude, 

routing, or airspeed that the employee providing air traffic services determines affected the 

safety of flight; or an aircraft entered special use airspace (e.g., a warning area, military 

operations are, or ATC-assigned airspace) without coordination and/or authorization. This 

category does not include deviations or anomalies in which a loss of separation occurred. 

Airspace infringement: This refers to an aircraft entering notified airspace without previously 

requesting and obtaining clearance from the controlling authority of that airspace, or entering 

the airspace under conditions that were not contained in the clearance. 

Altitude deviation: This refers to an aircraft failing to fly at the level to which it has been 

cleared, also known as level bust. 

Route/course deviation: This refers to an aircraft deviating from its cleared flight path. 

Speed deviation: This refers to an aircraft deviating from its cleared speed. 

Ground and Landing Events 

These are events that occurred at the approach and landing phase of the flight that did not 

involve a loss of separation, but may have affected the safety of operations. These are also 

events in the aerodrome environment that did not involve a loss of separation, but may have 

affected the safety of operations. 

Missed approach / Go-around: This refers an aborted landing initiated by either a flight crew or 

ATC involving turbojet aircraft within one-half of a mile of the arrival threshold not involving 

practice approaches. 

Forced landing: This refers to a landing by an aircraft under factors outside the pilot’s control, 

such as the failure of engines, systems, components or weather which makes continued flight 

impossible. 

Landing without Clearance: This refers to an aircraft landing without obtaining proper clearance 

prior to landing. This includes instances in which an aircraft unexpectedly landed or departed, 

or attempted to land or depart, on a runway or surface. 

Runway incursion: This refers to an occurrence of an aerodrome involving the incorrect 

presence of an aircraft, vehicle, or person on the protected area of a surface designated for the 

landing and takeoff of aircraft. 

Runway excursion: This refers to an aircraft unintentionally maneuvering off the runway or 

taxiway. This also includes overrun on takeoff (departing aircraft failing to become airborne 

before reaching the end of the runway), overrun on landing (landing aircraft failing to stop 

before reaching the end of the runway), undershoot on landing (landing aircraft touching down 

in the undershoot area of the designated runway). 
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Aborted takeoff: This refers to instances in which any part of the aircraft crossing over the 

runway hold-short line and the controller canceling the takeoff or the flight crew aborting the 

takeoff. 

Other landing/takeoff issues: Examples include instances in which there was an unstable 

approach to runway during landing; cases where landing took place in the wrong airport or 

runway; instances in which an aircraft landed or flew an unrestricted low approach to a closed 

runway (or portion thereof). 

Other Events 

Fire / smoke / fumes: This refers to the presence of fire or smoke is in or on the aircraft while 

in flight or on the ground (which is not the result of aircraft crashing). 

Equipment malfunction: This refers to a failure or malfunction occurring involving aircraft or 

ATC equipment, including engine-related problems, errors in software systems, and parts 

separating from an aircraft. 

Wildlife collision: This refers to the aircraft colliding with or taking evasive action to avoid 

colliding with wildlife (particularly birds) on the movement area of an aerodrome. Includes 

instances where evasive action was taken by the flight crew that led to a collision off the 

movement area of the aerodrome or to consequences other than a collision (e.g., gear 

collapsing). 

Criminal activity: This refers to a criminal or security related act occurring which resulted in an 

accident or incident. These include hijacking and/or aircraft theft, flight control interference, 

sabotage, suicide, and acts of war. 

Other: This refers to occurrences that cannot be classified as any of the event types listed in 

this taxonomy. 
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