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Text Mining, Corpus Building and

Testing
Karine Megerdoomian

1.1 Introduction

Approaches in computational linguistics have traditionally concen-
trated on the development of formal mechanisms and the enhancement
of knowledge sources for language analysis. Recently, however, there
has been a marked trend towards quantitative approaches, with a fo-
cus on statistical knowledge acquisition techniques using a collection
of written text or recorded speech called corpus (plural corpora).

With the publication of Syntactic Structures (Chomsky, 1957), com-
putational approaches to language became dominated by the theoreti-
cal perspective developed in generative linguistics. In Syntactic Struc-
tures, Chomsky argued that quantitative approaches to analyzing lan-
guage and investigating linguistic patterns in a corpus cannot provide
an explanatory theory. Chomsky’s classification of the three levels of
adequacy treated quantitative approaches as descriptive and thus hav-
ing no impact on the goal of formulating an explanatorily adequate
theory of language.

Chomsky (1957) criticized the inadequacies of Markov models used
in statistical approaches for modeling natural language pointing to the
fact that they are unable to model many recursive structures. Further-
more, he argued that a corpus cannot serve as a useful tool for the
linguist:

“Any natural corpus will be skewed. Some sentences won’t occur be-
cause they are obvious, others because they are false, still others be-
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cause they are impolite. The corpus, if natural, will be so wildly skewed
that the description [of language based on the corpus] would be no more
than a mere list.” (Chomsky, 1957, p. 159)

The result was a rift between the generative linguistic or symbolic
approach, whose goal is to develop an explanatorily adequate theory of
language with introspective data as the primary evidence, and the sta-
tistical approach, which was motivated by empirical coverage and used
collections of naturally occurring data as primary evidence. Hence, com-
putational approaches to language analysis from the late 1950s to late
1980s included a prominent emphasis on building knowledge sources
in the form of symbolic rules and were often hostile to quantitative
methods. The 1990s, however, have witnessed a resurgence of interest
in corpus-based and statistical methods of language analysis, which has
now become the prominent methodology within the field.

Many technological advances have contributed to the newly found
popularity of quantitative models. With the dramatic increase in on-
line information throughout the world, naturally occurring data are
now readily available. There exists a preponderence of unrestricted text
available through the world wide web and electronic communications.
At the same time, a number of advances in the field of computer sci-
ence and engineering have facilitated the analysis of these large text
corpora. Faster processing and cheaper storage space provide the com-
putational resources for successfully extracting the potential value and
information from these texts. Furthermore, the advent of CD-ROMs,
online dictionaries and funded data-collection initiatives have made the
distribution of large sets of data much easier.

Within the last two decades, the processing speed of personal com-
puters has also risen while costs have fallen dramatically. These changes
have given personal computer users access to large sets of corpora. The
resurgence of interest in corpus-driven approaches has also been fueled
by the need for applications that work with language and unstructured
information in a real world context. The old ‘acquisition bottleneck’ in
collecting corpora has now been replaced by the dire need to manipulate
the floods of unstructured and uncoordinated data available. In fact,
an increasing number of natural language processing systems are being
used in support of other computer programs – as in database man-
agement systems, text categorization, question answering systems and
automatic summarizers. The need for broad coverage, robustness, and
the fact that users are satisfied with less than perfect results (e.g., rough
automatic translations of online text) have required natural language
processing systems that employ large-scale quantitative methods.
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In addition to the language technology applications for businesses
and government agencies, investigations of large text corpora have been
used to provide insight on a number of linguistic phenomena such as us-
age of collocations or idiomatic expressions, word sense disambiguation,
and lexical acquisition.

This chapter presents an introduction to corpus-based approaches
in computational linguistics. Section 1.2 defines various corpus types
and explores some of the general applications and usages of text data
mining techniques and corpus linguistics. Section 1.3 discusses the ba-
sic problems of dealing with online text such as formatting, conversion
and tokenization. These include some of the low-level processes applied
to a text prior to the real quantitative or research work. Though low-
level, these issues are at the basis of processing and manipulating a
corpus and any inaccuracies at this level affect all subsequent results.
The following section describes methods for annotating the tokenized
texts. In certain applications, explicit semantic or syntactic information
is required before the research project begins. This section will consider
some of the criteria taken into account when marking up a text. In Sec-
tion 1.5, various applications of corpus-based approaches are discussed
briefly. These include lexicon acquisition, partial parsing, word sense
disambiguation, discourse analysis, information retrieval, text catego-
rization and machine translation. Section 1.6 presents the basic tools
and techniques needed to manipulate a language corpus. In addition,
the section addresses methods used to evaluate and test a language
model. Section 1.7 further studies the division between symbolic and
statistical approaches to language analysis and explores the arguments
for hybrid systems in computational linguistics. The last section is a
summary of the chapter.

1.2 Corpus Analysis and Text Data Mining

1.2.1 Corpus Properties

A corpus is a collection of text or speech material that has been
brought together according to a certain set of predetermined criteria.
Corpora are usually used for extracting statistical and linguistic infor-
mation and for testing hypotheses about natural language. In statistical
approaches, a corpus is used to train and test probabilistic algorithms.

Although there is no clear consensus in the field on what counts
as a corpus, there exist a number of characteristics that describe a
corpus in computational linguistics. A modern corpus of computational
linguistics is often collected in machine readable or electronic format.



May 6, 2003

4 / Karine Megerdoomian

In addition, a corpus needs to be representative of the domain under
study and should be a balanced sample.

A sample is representative if the linguistic information found
within the sample also holds for the general population of the domain
under investigation. One of Chomsky’s criticisms of a corpus-based
approach was that any corpus used for analyzing language is bound to
be skewed since language is infinite and all possible utterances could
never be represented accurately in a finite collection of text. Chomsky
argues that, in a corpus, rare utterances may be included several times
while common words or structures may not appear.

Hence, the goal is to construct a corpus that is as representative as
possible of the domain under study, by including samples from a broad
range of material. A representative corpus can provide a reasonably
accurate and proportional picture of the entire language population.
For instance, the percentage of irregular plurals in a representative
sample of English is proportional to the percentage of occurrence of
irregular English plurals in general.

Another important criterion for a corpus is that it be a balanced

sample of the general population. A balanced corpus is a collection
that attempts to cover as many textual styles as possible by trying to
include samples from various genres: poetry, prose, non-fiction, news,
emails, references, etc. What constitutes a truly balanced corpus is an
open question, but some of the parameters that need to be taken into
account for constructing a balanced sample of material are genre, text
type and domain. In addition, the length of the corpus and the time
frame represented (e.g., 16th century English vs. Modern English) are
also important criteria in constructing a balanced sample of text.

The properties of a corpus, however, vary depending on the applica-
tions for which they are to be used. For instance, it is more important
for statistical natural language processing (NLP) systems to have a
large set of data to train on rather than having a balanced corpus.
Similarly, if corpora are assembled for a specific purpose, then they
do not necessarily include samples from diverse genres. These special

corpora are not balanced by definition and will only provide a dis-
torted view of the language segment if used for general purposes.1 The

1Note that the notion of balanced corpus has sometimes been used in a relative
sense. A special corpus can be “balanced” within the scope of a given domain if it
includes various genres containing the language phenomena under study. Hence, if
the goal is to analyze language phenomena in political news articles then the corpus
should be “balanced” by including news items from various newspapers or sources
of the language in order to capture different styles, vocabulary and tokenization
standards. But it is not crucial to gather email or poetry samples to train the
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advantage of such a corpus over a balanced corpus is the smaller size.
In addition, the content of a special corpus is specially targeted to in-
clude the phenomena the researcher is looking for, thus the particular
wordforms or syntactic structures being investigated will occur more
frequently than they might in a balanced corpus.

Although corpora are generally finite in size, a type of corpus known
as a monitor corpus is formed of a nonfinite collection of text which
grows regularly to reflect language changes. Monitor corpora are nor-
mally used for lexicography purposes. Furthermore, certain corpora are
enriched with explicit semantic or syntactic information that facilitates
retrieval and analysis of electronic text. These annotated or marked

up texts will be discussed at length in Section 1.4. Some applications
require monolingual corpus samples while others may need multilingual
corpora (e.g., in machine translation).

Thus, although there is no consensus in the field of computational
linguistics on the requirements for assembling corpora, there does exist
a general agreement that attempts should be made to make a cor-
pus representative and balanced. Report results and estimates obtained
from such corpora can then be reasonably extrapolated to the domain
of interest. Nevertheless, what properties a corpus should contain is
determined in large part by the applications. For specific parameters
and guidelines for establishing a corpus, the reader is referred to Cor-
pus Design Criteria by Atkins et al. (1992), which reviews the practical
stages in the process of assembling a corpus.

1.2.2 Corpora Resources

One of the first major collections of text to be used in computational lin-
guistics was the Brown Corpus (Kučera and Francis 1967). The Brown
Corpus was assembled in Brown University in 1963-64 and was designed
as a representative sample of written American English, divided roughly
evenly into genres, and including about one million tagged words. The
Brown Corpus is probably the most widely known corpus and most
institutions doing research on NLP have a copy available. This corpus
covered only American English but its counterpart for British English
was built in the 1970s and is known as the Lancaster-Oslo-Bergen cor-
pus (Johansson et al 1978).

The Penn Treebank is a larger corpus of about 4.5 million words.
All words in this corpus have been annotated with part of speech tags
and it also includes labelled brackets marking syntactic analysis. This
corpus was collected from the Wall Street Journal. It is very widely

statistical system or to test the output.
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((S

(NP (NN Implementation)

(PP (IN of)

(NP

(NP (NNP Georgia))

(POS ’s) (NN automobile) (NN title) (NN law))))

(AUX (VBD was))

(VP (ADVP (RB also))

(VBN recommended)

(PP (IN by)

(NP (DT the) (JJ outgoing) (NN jury)))))

(. .))

FIGURE 1 Brown Corpus Sample.

(S (‘‘ ‘‘)

(NP (DT A) (NN stockbroker))

(VP (VBZ is)

(NP (DT an) (NN example)

(PP (IN of)

(NP (DT a) (NN profession)

(PP (IN in)

(NP (NN trade) (CC and) (NN finance)))))))

FIGURE 2 Penn Treebank Sample.

used but is not available for free.

There exist a number of other English corpora sources often used
in corpus analysis and computational linguistics. The British National
Corpus (BNC) was completed in 1994 and is a 100 million word col-
lection representing a wide cross-section of current written as well as
spoken British English2. This corpus has been tagged for part of speech.
The Birmingham Collection of English Text contains 20 million words
and was built in 1985. The 2002 release of the Bank of English con-
sists of approximately 450 million words from written and spoken lan-
guage3. Project Gutenberg is another good source of online raw text
freely available and consisting of over 6,000 books in English, most of

2www.hc.ox.ac.uk/BNC.
3http://titania.cobuildcollins.co.uk/boe info.html.
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which were published before 1923 and are thus free of copyright is-
sues4. Also, Reuters makes available about 810,000 English language
news stories in raw text for research purposes.

A project is currently underway to build the American National
Corpus (ANC), to consist of over 100 million tagged words, chosen from
a broad selection of contemporary written and spoken texts of American
English5. The first release consisting of 10 million words tagged for
part of speech is scheduled to be released in 2003, with the final release
projected for Fall 2004. The ANC will be freely available for research
purposes from the Lingustic Data Consortium (LDC).

Corpora of Western European languages are often freely available.
The largest corpus of German text, for instance, is the Mannheimer
Corpus Collection with about 2 billion running words. A smaller ver-
sion is available free of charge, but only for research purposes6. Corpora
for other languages are not as easily available and oftentimes, the re-
searcher needs to spend a significant amount of time downloading and
preparing corpus sources for the language under study.

Probably the most well-known bilingual corpus of parallel texts is
the Canadian Hansards, which is the proceedings of the Canadian par-
liament. This corpus consists of texts in French and English that are
translations of each other. This bilingual corpus has been used for sta-
tistical approaches to machine translation by training the system on
the aligned parallel texts. The Canadian Hansards are available for a
licensing fee. The United Nations Parallel Text Corpus, available at the
Linguistic Data Consortium (LDC) for research purposes, was drawn
from the UN electronic text archives covering the period between 1988
and 1993. This corpus contains about 2.5 gigabytes of text in English,
French and Spanish.

The researcher often needs to take into account legal issues sur-
rounding copyrights, especially if the corpora are to be made public
and distributed freely for research purposes. Commercial institutions
often do not make their corpora available to the public and to their
competitors, although some may provide them in exchange for a licens-
ing fee. Copyright issues do not arise if researchers use documents of
public record (e.g., certain online news sources, public governmental
documents), material available freely from research institutions, and
old text that has fallen out of copyright (e.g., Shakespeare, the Bible).

A good place to start gathering corpora for lesser-studied languages
is www.webdopresse.ch, which contains links to multilingual news

4http://promo.net/pg/.
5http://americannationalcorpus.org.
6http://corpora.ids-mannheim.de/cosmas/.
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sources. Parallel text in all European Union languages can be down-
loaded from the EU webserver at http://europa.eu.int.Also of inter-
est are the corpus links on Linguist List (www.linguistlist.org). An-
other good source for corpus-based research is the Linguistic Data Con-
sortium (LDC) at the University of Pennsylvania (www.ldc.upenn.edu).
LDC is a consortium of research laboratories, companies and Universi-
ties and is dedicated to collecting speech and text corpora and language
resources for research and development.

1.2.3 Corpus Analysis

Once the data are collected into a corpus of text or speech, they can be
used to investigate linguistic phenomena or to extract information on
language use. As mentioned earlier, corpora can be used for a number
of distinct applications and the manipulations done to a corpus depend
mainly on the final goals of the researcher.

Corpus linguistics is the study of language through analysis of
naturally-occurring data. Given the vast amount of language data avail-
able online, corpus linguistics usually involves computational methods
and tools. Corpus linguists use the resulting patterns and the extracted
information to test hypotheses about language, with the goal of de-
veloping theories of linguistics and language use. In contrast, compu-
tational linguists usually gather information in order to create more
effective computational grammars and systems. In computational lin-
guistics, the results of tests performed on corpora and the information
obtained from corpus analysis is often used as a basis for improving
NLP applications.

Although much information can be obtained from raw corpora, a
prerequisite to most corpus analysis work is the annotation of the tex-
tual material. The tags and indices are then used to extract relevant
information. The extent of the markup (e.g., words vs. phrases) and
the tagsets used are determined by the application needs. Hence, the
analysis of a corpus of written text allows the researcher to retrieve
words, phrases or sentences by pattern matching. In order to facilitate
information retrieval, the researcher could annotate the corpus with
tags or indices, and statistical methods could be utilized to rank the
retrieved elements. These methods can be used to analyze linguistic
patterns and usage within the given corpus. For instance, such infor-
mation retrieval is often used in applications in collocation analysis,
machine translation, lexicon acquisition, partial syntactic analysis and
text summarization. Marked-up data and the criteria for developing
tagsets are discussed in Section 1.4. We will further develop a number
of applications for annotated corpora in Section 1.5.
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1.2.4 Text Mining

Recent years have witnessed an enormous growth in the volume of
online text documents in multiple formats and languages. These doc-
uments represent unstructured data residing outside of relational
databases, such as spreadsheets, word processor files, email message
archives, presentations, PDF files, websites, graphics, or even audio
and video files. The growing prevalence of online documents has led
to a great interest in Text Mining, the goal of which is to discover
knowledge from unstructured textual data. Text Mining, also known as
Text Data Mining is a relatively new approach in computational lin-
guistics, often combining techniques from data mining, information ex-
traction, machine learning, natural language understanding, database
theory, and visualization. Text Mining has been defined as the nontriv-
ial extraction of implicit, previously unknown, and potentially useful
information from given data (Piatetsky-Shapiro and Frawley, 1991).

Several factors have contributed to the exponential growth of un-
structured data. In the 1980s, computers started to take over as the
principal method for creating content and sharing knowledge. With
the advent of the internet, the ease of creation of online text, and the
shift from manufacturing to service economies that involve the process-
ing of enormous volumes of information, the traditional bottleneck of
corpus acquisition gave way to the problem of unstructured data

management. Interestingly, most of the work and research done in
text mining seems to originate from the industry rather than academic
institutions, and there are many commercial text mining tools currently
in use. Some of these tools use neural networks as the basis for text pat-
tern recognition, while others combine a knowledge-based model with
a statistical approach.

Some researchers fail to distinguish data mining and text mining.
However, the difference between these two approaches lies in the type
of data under investigation. The aim of data mining is to discover
knowledge from databases and usually relies on the explicit structure
provided by the relational templates. However, about 85% of online
data do not exist in relational or tabular format but appear in un-
structured form. Text mining is concerned with knowledge discovery
from the large volume of unstructured natural-language documents by
determining key relationships and concepts.

Text mining has also been equated with Information Retrieval, but
Hearst (1999) distinguishes the two methodologies arguing that text
data mining can derive new information from the data while Informa-
tion Retrieval only extracts already existing information. Hence, while
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information retrieval accesses documents and matches patterns and
keywords to extract the information, a text mining system actually
generates new information by finding patterns across datasets. In fact,
although most text mining systems include an Information Extraction
module, knowledge discovery from unstructured data consists of sev-
eral distinct techniques. In text mining, a textual document is analyzed
by performing basic language processing and by extracting concepts,
entities and events. The relationships between various events and enti-
ties are then organized into a well-defined taxonomy of categories and
finally visualization tools are applied to this information structure to
navigate and explore the content set. Hence, text mining may include
information retrieval methods but it is really a nascent field at the in-
tersection of data mining, machine learning, information retrieval and
natural language processing.

The first step in text mining is information extraction (IE), which lo-
cates significant vocabulary items in natural-language documents. Typ-
ically, the elements extracted by an information extraction module in-
clude people, places, and companies; this is accomplished by recognizing
proper names and noun phrases in the text documents. An information
extraction module may also use a set of heuristics to identify phone
numbers, dates, and technical or domain-specific terms. It is important
to note, however, that information extraction cannot be applied un-
less the textual document has undergone some level of pre-processing
such as tokenization, lemmatization or stemming, and tagging. Machine
learning is often used to train the information extraction system. Once
terms and events are extracted from the text, relation and hierarchical
analysis is applied to determine the clustering of the documents and
the structuring in databases. The extracted terms are used to cluster a
collection of documents into groups that share common properties or re-
lated information, and to categorize them by assigning pre-determined
categories usually based on themes or topics. Data mining or Knowl-
edge Discovery in Database (KDD) techniques are applied at this point
to dicover the knowledge from the databases and visualization tools are
used to navigate the information.

Linguistic knowledge and corpus training are important during the
first part of text mining. Most text mining approaches require the ex-
traction of entities as well as events in order to form a meaningful
conceptual structure. For example, Karanikas et al. (2000) extracts en-
tity terms such as Department of Computation, combined with basic
event structure information such as take-over, company1, company2,
items that are used to describe the event depicted in the text. Sim-
ilarly, the text mining model developed at Inxight Software is based
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on a multilingual linguistic system that includes tokenization, morpho-
logical analysis, tagging, name recognition and partial parsing. Other
systems may also take into account semantic and coreference analyses.
Thus, most text mining systems have a level of text analysis involving
linguistic knowledge. The rest of this chapter discusses the creation of
some of these linguistic modules in computational linguistics.

1.3 Tokenization

Prior to analyzing corpora, one needs to filter out particular formatting
that is not relevant to the issues under study. Hence, when dealing with
online documents, HTML tags need to be stripped, and paragraphs,
tables and headers should be separated. The text often needs to undergo
tokenization in order to separate the input text into distinguishable
units or tokens and to determine sentence and word boundaries as
shown below with | indicating the token boundaries:

(1)
raw text: “Stop!”, Dr. Tyler shouted.
tokenized text: “|Stop|!|”|,|Dr.|Tyler|shouted|.

In languages like English, the presence of a space or tab usually
indicates a word boundary. In other languages, however, tokens are
often written without an intervening space; this is particularly true in
certain Asian languages. Punctuation can often be used in determining
word and sentence boundaries, but it is not always clear since periods
can be used to mark an abbreviation and hyphens occur inbetween two
parts of a compound word. This section outlines some of the issues that
arise when pre-processing corpora, with special emphasis on problems
in determining word boundaries.

1.3.1 Sentence Boundaries

Labeling of sentence boundaries is a prerequisite for many NLP tasks,
including part of speech tagging, sentence alignment in parallel corpora
or machine translation applications. Sentential punctuation markers
such as the question mark (?), exclamation point (!) and the period (.)
can be used to distinguish sentence boundaries. The period, however,
can be used to mark an abbreviation as in etc. or K.H. Smith, or an
acronym as in I.B.M. The period can also mark a decimal point or an
ellipsis. Furthermore, since an abbreviation can be the last token in a
sentence, the period at the end could signal both a sentence break and
an abbreviation; this is known as a haplology where one character has
two simultaneous uses. In general, however, 90% of periods in English
are sentence boundary markers and therefore, most tokenizing modules
use generic rules to detect a sentence boundary, often encoded in terms
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of regular expressions, and supplement them with a list of abbreviations
and acronyms. Hence, if the system knows that the word preceding
a period is not an abbreviation or acronym, then the period can be
confidently treated as an end-of-sentence marker. For the case of the
decimal point, processors can easily identify digits and numbers and
thus disambiguate the period in these instances.

In languages like English or French, capitalization can be used to
disambiguate punctuation. If the token following a period is a capital-
ized word then the period probably marks a sentence boundary (unless
the word is a proper noun), while a lowercase word would indicate that
a boundary has not been reached. The case of the word cannot be
used, however, to disambiguate boundaries in languages such as Ger-
man where common nouns are always capitalized, or in Arabic which
does not have a capitalized form.

Other issues also arise in sentence boundary detection. Sometimes
other punctuation such as the colon, semicolon and dash may separate
sentences. In addition, sentences may be split as in quotes in indirect
speech as in:

(2) “According to the latest reports,” he explained, “the war is im-
minent.”

This example also demonstrates another problem arising in tokeniza-
tion of English due to the typesetting standard in the United States,
where the close quotation mark follows the period. Furthermore, de-
tecting sentence boundaries is made difficult in certain corpora sources
that contain sentence fragments. This occurs, for instance, in headers in
news sources. Some tokenizers can recognize consecutive newline char-
acters which are then used to identify headings as sentence fragments.

Recent approaches to sentence boundary detection have tried dif-
ferent methodologies for obtaining better coverage and more robust
systems. Riley (1989) uses statistical classification trees trained on a
pre-tagged corpus. Palmer and Hearst (1997) take advantage of part-of-
speech information in a neural network to predict sentence boundaries.
More recent works develop a Maximum Entropy approach to boundary
detection based on the probability distribution of sentence boundaries
in a text (Reynar and Ratnaparkhi, 1997, Mikheev, 1998).

1.3.2 Word Segmentation

One of the major problems in tokenizing corpus data is the recognition
of what constitutes a word. The simplest method for delineating words
in computational linguistics is to use the occurrence of whitespace or
punctuation as a clue. Hence, if a token is surrounded by spaces, tabs,
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newline characters or punctuation marks, then it can be treated as a
distinct word. Although this approach may work for English in most
instances, it raises difficulties in analyzing other languages. This section
addresses some of the main problems in determining word boundaries
in computational linguistics.

Punctuation. In order to recognize words, it is usually desirable to
separate all unambiguous punctuation into a distinct token during seg-
mentation. However, as discussed in the previous section, a period could
sometimes signal the presence of an abbreviation and is not necessar-
ily preceded by a word. In these instances, the punctuation character
should presumably be maintained as part of the word token.

In English, apostrophes are sometimes used in marking possessive
nouns such as cat’s in the singular form or cats’ in the plural form
of a noun. Apostrophes can also be part of a word in English, e.g.,
rock’n roll. To complicate matters further, single apostrophes are also
used in forming contractions in English thus raising further difficulties
in word segmentation. Hence, some tokenizers treat they’ll or can’t as
single tokens while others divide these contractions into two distinct
tokens that will be treated as separate words by a tagger or parser.
The separated tokens ’ll and n’t are then treated as equivalent to will
and not, respectively.

Contractions. Contractions are common in Romance languages as
well. For instance, a tokenizer may need to expand the Spanish contrac-
tion del into de and el in order to obtain the correct syntactic structure
needed at a later stage in the processing. Other systems treat del as
a single token and decompose it into two distinct “words” or parts of
speech during morphological analysis.

Hyphenation. Hyphenation is a complex issue in most languages
since it can be used to divide subparts of a compound word as in
part-of-speech, e-mail, or anti-semitic, but hyphens may also be used
in joining words that are usually not treated as a single token as in
import-export or the 25-year-old. To treat these hyphenated elements
as a single word would tremendously increase the size of the lexicon.
In addition, it may actually cause problems in parsing since it often
alters the syntactic structure. Sometimes hyphenation is optional, e.g.,
mark-up vs. markup or part-of-speech vs. part of speech, and processors
need to take these differing conventions into account. A final difficulty
arises when a hyphen is used at the end of the line to split a long word.
These line-final cases are problematic since it is not clear whether the
word was initially hyphenated or not.

Whitespace. Another common problem in word segmentation is
the treatment of compounds when two tokens separated by a space



May 6, 2003

14 / Karine Megerdoomian

need to be treated as a single unit. For instance, the proper names Los
Angeles and New York each consist of two distinct tokens which form
a single word together. Other similar cases in English are multiwords
such as in order to or a priori or phrasal verbs as in pick up. Generally,
tokens separated by a space are split up by tokenizer modules and it
is only in subsequent processing that multiword tokens are recognized
and put back together.

Word segmentation in English is simpler than in other languages
where whitespace is not always used to separate words. In the writing
system of East Asian languages such as Chinese, Thai or Japanese,
there are no spaces between individual words. In Chinese, for instance,
whitespace usually only appears at paragraph boundaries. In imple-
menting tokenizers for these languages, oftentimes a lexicon or an ex-
tensive wordlist is incorporated in the module and used along with
a “greedy” word-matching algorithm that starts at the first charac-
ter and tries to match the longest word in the wordlist. More recent
approaches have applied statistics for word boundary disambiguation
with algorithms that can find the most probable sequence of words
according to the training model.

In German and Dutch, compound nouns are commonly written
as single orthographic words. The reader may be familiar with Mark
Twain’s famous parody of the German language (Twain 1880) in which
he provides examples of German compounding. For instance, the equiv-
alent of the English city council meetings is written as Stadtverordneten-
versammlungen in German. For processing purposes, a tokenizer may
need to perform decompounding by dividing up these compound
nouns or to somehow mark the internal structure of these words. Note
that German compounds may contain embedded morphemes that need
to be analyzed when tokenizing. For example, in the compound Un-
abhängigkeitserklärungen (Declarations of Independence), the two to-
kens are joined with the morpheme “s” (shown in bold). Certain NLP
systems incorporate some level of morphological analysis in the tok-
enizer module in order to be able to accurately recognize compounded
tokens; some systems merge the tokenizer and morphological analysis
module into a single component responsible for both functions.

Another tokenization problem arises with languages whose writing
system does not utilize the space consistently to mark a word bound-
ary. Although words are usually separated by intervening spaces in Per-
sian, they are sometimes omitted resulting in two distinct words being
treated as a single token. Also, some affixes in this language, such as
the plural suffix, may be separated from the base noun by a space,
requiring further processing to put together the separated morphemes.
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Numbers. Numbers often present additional problems in tokeniza-
tion of a text due to typographical differences across languages or
countries. For instance, phone numbers can be written in a num-
ber of different formats using hyphens, brackets, periods, spaces, plus
signs (to mark area codes) or slashes. For example, dates in European
texts are in the format day/month/year, whereas in American English
texts the day and month order is reversed and dates are presented as
month/day/year. In addition, the number of digits in a phone number
varies from one country to the next. Preprocessors generally do not
have to distinguish a phone number from a date, but they do need to
be able to recognize numbers from alphabetic strings (or words).

Encoding. English and most Western European languages use
the ASCII character set but one of the problems in tokenizing non-
European languages lies in recognizing the character encoding of the
corpus data. If the natural language processing system cannot identify
a document’s encoding, it will not be able to process it accurately
at any level. This is even more difficult for multilingual applications
since there does not exist a single standard encoding for online texts
in most languages. For example, Russian text can be found in any of
the following four character sets: cp1251, ISO 8859-5, koi8-r or utf8.
Many NLP systems try to unify the processing modules by using the
Unicode standard which provides a unique number for each character
and allows to handle text in practically any script or language. Hence,
the encoding of the input data is converted to the Unicode character
set for processing purposes throughout the system. In any NLP appli-
cation, the character encoding of the language under study needs to be
taken into account prior to processing.

1.3.3 Speech Corpora

The demarcation of word boundaries in speech corpora faces a whole
other set of problems. Speech corpora are filled with contractions, per-
formance issues (noise, coughs, “um” fillers), and fragments. In addi-
tion, accents and pronunciation variants affect the recognition of the
speech data and even the pitch of the wave frequency can hinder the
segmentation of words in these corpora. For specific issues in analyz-
ing speech corpora and techniques for word segmentation, the reader
is referred to Amtrup, Chapter 9, this volume.

1.4 Corpus Annotation

While much information can be obtained from plain text or unan-

notated corpora, many applications take advantage of an annotated

corpus that has been enhanced with tags providing explicit linguistic
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information. For instance, the implicit information denoted by the verb
“eats” becomes explicitly marked in a tagged corpus in which the verb
may be annotated as “eats VVZ” where VV marks a lexical verb and Z
indicates a third person singular form. Such annotations facilitate the
retrieval and analysis of linguistic information.

A basic mark-up scheme is to tag a corpus for formatting attributes
such as page breaks, paragraphs or font information. A corpus can
also be tagged with identifying information such as author, date, title,
genre, register, etc. This information is usually enclosed within angle
brackets and annotated with a tag that describes the general function or
identity of the marked-up text. The most supported form of annotation
is the Standard Generalized Markup Language or SGML, HTML being
the most common example of SGML encoding. An SGML document
contains a set of marked-up elements that are enclosed in between two
tags contained within angle brackets. The end tag begins with a forward
slash character. Some examples are given below:

<title>A simple title</title>

<author>

<name>John Smith</name>

</author>

<Mod date=‘‘15-Feb-2002’’

type=‘‘Last annotation update’’>

</Mod>

A more common set of tags are <p> for paragraph and <s> for sen-
tence as shown:

<p><s>This is a short example.</s>

<s>It contains two sentences.</s></p>

XML (Extensible Markup Language) is a simplified subset of SGML
and is often used in marking up linguistic corpora. A sample annotation
of a Penn Corpus sentence using XML syntax is illustrated below:

<S>

<NP>

<DT>A</DT>

<NN>stockbroker</NN>

</NP>
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<VP>

<VBZ>is</VBZ>

<NP>

<DT>an</DT>

<NN>example</NN>

<PP>

<IN>of</IN>

<NP>

<DT>a</DT>

<NN>profession</NN>

<PP>

<IN>in</IN>

<NP>

<NN>trade</NN>

<CC>and</CC>

<NN>finance</NN>

</NP>

</PP>

</NP>

</PP>

</NP>

</VP>

<.>.</.>

</S>

As this example demonstrates, a corpus can be annotated by tagging
part of speech categories and linguistic phrases. The level of detail
in corpus annotation and the size of the element tagged (i.e., word
vs. phrase) is typically dependent on the objectives of the system or
project.

Probably the most widespread annotation scheme is tagging lexical
units for part of speech (POS). Part of speech information in a text is
used in information retrieval applications by helping to select and ex-
tract nouns or other important words from a document. Part of speech
information can also be used in partial parsing. For example, looking
for a “Title” such as Dr. or Mr., the system can detect proper names
for information extraction applications and summarization. Statistical
automatic part-of-speech taggers trained on marked-up text can help
build word sense disambiguation models.

Speech corpora also take advantage of part of speech information.
In English, words like object are pronounced differently depending on
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their part of speech: the noun is pronounced ‘OBject’ while the verb is
pronounced ‘obJECT’. Thus, knowledge of the part of speech can help
the accuracy in a speech recognition system.

This section discusses applications of annotated corpora and de-
scribes different markup schemes and methodologies. Some of the cri-
teria to be considered prior to selecting or designing a tagset for part
of speech tagging are also addressed.

1.4.1 Annotation Coverage

The design of a tagset and the choice of the annotation scheme depends
heavily on the goals of the research and the final application of the NLP
system. As discussed in the last section, some corpora are annotated
only with formatting tags distinguishing headers and paragraphs, but
most linguistic applications often require some level of POS tagging

whereby each word is explicitly assigned a part of speech or grammati-
cal class. For information retrieval applications, it is often necessary to
mark the boundaries of constituents or to tag noun phrases. Some ap-
plications require even more markup such as annotating full syntactic
structure or tagging of word senses.

Since, as in most corpus-related decisions, there is no single standard
in corpus annotation schemes and methodologies, the information to be
annotated in the data and the format used are often motivated by the
system application. It should be noted that for rule-based methodolo-
gies in NLP, tagged corpora are used mainly to evaluate the system.
In statistical approaches, in addition to tagged corpora for testing pur-
poses, large sets of texts need to be annotated for training the stochastic
model. The following represent some examples of the possible annota-
tion schemes:7

Part of speech annotation: POS tagging was one of the first
types of annotation used in corpus-based work and is the most com-
mon annotation used today. Corpora tagged with POS information are
often used as a prerequisite for more complex NLP applications such as
information extraction, syntactic parsing or semantic field annotation.
They are also used to help train statistical models. POS tagging will
be dicussed in detail in the rest of this section.

Lemmatization: Certain POS taggers also perform lemmatization
or stemming by reducing the word form in the corpus to its lexeme
form. A lexeme, also known as stem or headword is the form of the
word that is listed in a dictionary and which does not contain any in-
flectional morphology. For example, the lexeme for the verb forms ate,

7For links to various annotated corpora for text and speech, the reader is referred
to the LDC website at www.ldc.upenn.edu/annotation.
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eats, and eating is eat. Lemmatization requires some level of morpho-
logical analysis but combined with POS tagging, it is crucial for most
complex NLP models.

Parsing: Parsed corpora, also known as treebanks, annotate the
syntactic phrases by using the information provided by the POS tagger.
Usually, labelled brackets are used to tag the constituents. The Penn
Treebank project is an example of parsed corpora. The following is
a sample parse where S marks sentence, VP marks the verb phrase,
and NP and PP indicate the noun phrase and prepositional phrase,
respectively.

(3) [S [NP The boy NP] [VP sat [PP on [NP his bicycle NP]

PP] VP] S]

Certain applications only require skeleton parsing where only the
most basic constituent structure information is overtly tagged. Many
applications only tag noun phrases (NPs) and prepositional phrases
(PPs) and do not deal with more complex or embedded structures. In
contrast, full parsing schemas provide a very detailed analysis of the
syntactic structure and include nested pairs of labelled brackets.

Although automatic parsing methods have been used in the field,
the results are not as accurate as part of speech tagging and often re-
quire manual editing. Hence, it is important to have detailed guidelines
when tagging complete sentences, in particular in projects where several
people are involved, in order to maintain a certain level of consistency
throughout the corpus.

Semantic Annotation: The kind of semantic information required
by an application or deemed important by the researcher varies. One of
the most common semantic annotations consists of subcategorization
information that provide insight on the relations between constituents
and events. For instance, fact extraction and text mining systems can
utilize information of the type ‘who did what to whom’ as shown in the
following example, explicitly marking the agent and patient relations
of the verb murder.

(4) [NP The soldiers NP-AGENT] murdered-VVDv [NP six Jesuit
priests NP-PATIENT]

Corpora are oftentimes annotated with semantic information about
word senses as shown in the examples below:8

8See description of ontology systems in Chapter 2.
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(5)

The FW = low content word; function word
soldiers WAR AGNT = war and conflict, agent
put PUT = object-oriented physical activity
Jesuit REL TYPE = religion

Discourse Analysis: Discourse processing is concerned with the
coherent analysis of text segments larger than a sentence. Discourse
annotation may consist of marking the text with tags distinguishing
greetings (e.g., hello), apologies (e.g., excuse me, sorry), politeness (e.g.,
please), etc. One of the main researches in discourse analysis is the iden-
tification of the referents of a noun phrase. Hence, anaphoric annota-
tion is one of the most important tasks in discourse markup, whereby
pronominal reference is overtly encoded. The following example from
the Lancaster/IBM anaphoric treebank illustrates this approach. Note
that in this example, tags such as (1 1) or (2 2) denote a noun phrase
that enters into a relationship with an anaphoric element tagged with
REF=1 or REF=2, depending on the noun phrase that it is to be
identified with.

A039 1 v (1 [N Local_JJ atheists_NN2 N] 1) [V want_VV0

(2 [N the_AT (9 Charlotte_N1 9) Police_NN2 Department_NNJ

N] 2) [Ti to_TO get_VV0 rid_VVN of_IO [N 3 <REF=2 its_APP$

chaplain 3) ,_, [N {{3 the_AT Rev._NNSB1 Dennis_NP1

Whitaker_NP1 3} ,_, 38_MC N]N]Ti]V] ._.

Speech Annotation: Speech corpora can be tagged to reflect the
prosody of the spoken text, such as intonation, tone or stress patterns.
Typically, only the most prominent intonations are annotated. It is ex-
tremely difficult to automatically tag an intonation or tone pattern,
hence speech annotations need to be performed by humans. This gives
rise to a number of difficulties that do not exist with written text anno-
tations. First, it is very hard to agree on prosodic patterns and provide
a consistently annotated corpus, since judgments are more impression-
istic in nature. Furthermore, since prosodic features are a property of
syllables rather than whole words, markup often appears in between
the word parts making it difficult to automatically recover the origi-
nal raw text. The following is a small example from the London-Lund
corpus:

1 8 14 1530 1 1 B 11 ^quite a nice .room to !s\it in# /

1 8 14 1540 1 1 B 11 *^\isn’t* it# /

1 5 15 1550 1 1 A 11 *^y/\es#* - - - /
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The codes used in this example are:
# end of tone group
^ onset
\ falling nuclear tone
/\ rise-fall nuclear tone
. normal stress
! booster: higher pitch than preceding prominent syllable
(( )) unclear
* * simultaneous speech
- pause of one stress unit

As is clear from the various annotation approaches presented here,
the material being tagged and the markup set selected depend strongly
on the research objectives and application needs. Since there does not
exist a standard tagset for each application (besides a general notion
that tagsets should have broad coverage and remain theory-neutral),
the researcher typically designs a set of tags that would be relevant to
the distinctions he or she needs to capture within the corpus or the
language domain under study.

1.4.2 Tagset Design

The most common type of corpus annotation is part of speech tagging
where the aim is to assign a grammatical category to each lexical unit.
POS tagging is the foundation for further forms of linguistic analysis
but there is no generally accepted convention with respect to the tags
used or even the level of detail encoded.

A human responsible for annotating a raw text needs to be provided
with a tagset that includes all the annotation tags to be used within
the corpus and that has been designed for the purpose of the project.
A tagging algorithm also requires a specified tagset as input in order
to automatically annotate a wordlist derived from a raw corpus.

The most widely used tagsets in computational linguistics have been
the ones used in the Brown Corpus, the Penn Treebank and the British
National Corpus (or CLAWS). Manning and Schütze (1999) provide an
interesting comparison of these three tagsets clearly demonstrating the
distinct tag format chosen in each case and the different tagset sizes.
For instance, both the Brown Corpus and the BNC distinguish ordinal
number adjectives (e.g., sixth) from regular adjectives, by marking them
with different tags. In addition, both corpora have a special tag for
adjectives that are not morphologically marked as a superlative but
which have a superlative meaning (e.g., chief, top). The Penn Corpus,
however, has one single tag for a regular adjective, an ordinal adjective
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and a semantically superlative adjective. The Penn Corpus, on the other
hand, distinguishes the base present form of the auxiliary do from the
infinitive form tagging them as VBP and VB, respectively. The Brown
Corpus and the BNC annotate both instances of do with the same tag.
In contrast, the Penn Treebank annotates auxiliaries with the same tag
as that of verbs, whereas the Brown Corpus and the BNC mark each
auxiliary with a different tag. Clearly, each project determines which
distinctions need to be made and there is no single standard method
for corpus annotation throughout the field.

However, several guidelines are usually taken into account when de-
signing a tagset. The first objective of the tagset is to define an anno-
tation set that can provide the relevant linguistic information to the
user about the syntactic or semantic properties of the word. In addition,
the tagsets often include features that will be useful at further stages of
processing or that will be needed for predicting the behavior of nearby
words. The more fine-grained the distinctions made in a tagset, how-
ever, the larger the size. The rest of this subsection discusses some of
the issues to be considered when designing a tagset.

The tags selected for annotating a corpus should be able to commu-
nicate the relevant linguistic information to the user. Tags are generally
short and often consist of a two or three letter markup. For instance,
the BNC tag for a comparative adjective is AJC and the tag for a su-
perlative adjective is AJS. In companies whose products are used by
non-linguists, sometimes a more user-friendly tagset is adopted such as
Nn for a singular noun and Nn-Pl for plural nouns.

In certain cases, the lexical unit consists of more than one token such
as part of speech, hang on, New York or carriage return. Multiword
expressions cannot be properly analyzed if they are not recognized as
single units. Most taggers are equipped with a lexicon that recognizes
multiword tokens and idiomatic expressions, and tags them as a single
word, hence part of speech will be marked as a noun and New York as
a proper noun.

Certain multiwords, however, may be discontinuous in a sentence.
For example, the English expression either... or... consists of two dis-
tinct tokens either and or, which appear together within a sentence
but are always separated by intervening material. Automatically tag-
ging such elements as a single unit is quite difficult and usually requires
complex lexical structure that can allow intervening variables. This is
particularly true of phrasal verbs in English as in pick up (e.g., pick it
up) or keep tabs (e.g., keep close tabs). In order to capture the relation
between the two parts of an idiom, however, many tagsets include tags
that are linked or that refer back to each other.
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Certain words have ambiguous parts of speech. For instance, book
can be interpreted as a noun or as a verb, and both part of speech
tags should be assigned to the word book in the corpus. Statistical
taggers attempt to disambiguate these multiple tags based on weights
attributed to the probability of occurrence of nearby words and select
the most probable tag given the context.

In order to help the disambiguation in statistical approaches, the
researcher can select tags that classify the part of speech of the lexical
item but which also behave as distributional tags by providing infor-
mation on the behavior of other words in the context. Hence, distin-
guishing the pronoun they from the possessive form their by annotating
them with separate markers can help determine the tag of the following
element in the sentences below, where left is ambiguous between a verb
and an adjective.

(6) a. ‘They left’

b. ‘Their left hands...’

Such distributional information is then used by the statistical al-
gorithm to disambiguate nearby tags. Thus, if the tagger knows that
a possessive pronoun can only be followed by the elements in a noun
phrase and not by a verb, the word “left” can be easily disambiguated.
Another example comes from Romance languages where adjectives can
appear before the noun or following it depending on the properties
of the adjectival. Annotating the two pre-nominal and post-nominal
adjectival types with distinct tags can help the tagger disambiguate
nearby elements since it would expect a noun after the premodifying
adjective and a noun before the postmodifying adjective.

Sometimes, tags are differentiated in order to provide finer-grained
information that would help in later stages of corpus analysis. For ex-
ample, in certain languages, case-marking can be used to indicate a
noun phrase boundary. If the case-marked noun is simply tagged as
Nn, it would not be distinguished from a non-case marked nominal.
Hence, if the goal is to group noun phrases or to perform parsing, it
may be advantageous to have a separate tag Nn-Case or Nn-NPB to
signal that a noun phrase boundary has been reached. A more detailed
tagset could ascertain that no useful information is lost at later stages
of processing.

We saw that more fine-grained tagsets may be needed to provide
distributional information or to capture important morphological in-
formation. A more detailed tagset, however, also means a larger tagset
which may make it harder to train a statistical model, giving rise to
more errors. As always, the researcher needs to find the balance between
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improving the prediction ability of the tagger and facilitating the clas-
sification task, since there is no straightforward relationship between
the size of the tagset and the performance of the automatic tagger.

Other issues that the researcher needs to consider when designing
a tagset include tags for foreign words, numbers and punctuation. For
instance, although normally an end of sentence punctuation is distin-
guished from others, taggers vary depending on whether they choose
to make distinctions among the other punctuation types (for instance,
the Penn Treebank tagset has 9 distinct punctuation tags whereas the
BNC distinguishes only 4).

1.4.3 Tagging Methods

Although small corpora are often tagged manually, the size of most cor-
pora today, with millions of running word forms, calls for an automatic
approach. Automatic taggers can be rule-based or probabilistic while
some modern taggers combine the two approaches.

Rule-based taggers, also known as knowledge-based taggers an-
alyze corpus data using a grammatical model. Hence, the information
about morphological and grammatical structures is encoded in the pro-
gram (possibly using a meta language) rather than being “learned”
from a training corpus. The first automatic tagger, TAGGIT, is an
example of a rule-based tagger (Greene and Rubin, 1971). Rule-based
taggers can often correctly analyze complex and long structures, but
they are generally unable to provide tags for constructions that have
not been recognized.

Probabilistic taggers use statistical algorithms to analyze a cor-
pus. These taggers first need to be trained on a pre-tagged corpus (often
tagged manually). Based on this training corpus, probabilistic taggers
build a probability matrix that stores the probability of an individual
word belonging to a certain grammatical class or part of speech. In ad-
dition, the matrix stores the probability of having a word of a certain
part of speech follow a word from another particular part of speech;
this is known as bigram analysis since the tagger stores information
on pairs of tags. Some taggers can analyze a larger context by stor-
ing information about trigrams or by gathering information on several
nearby wordforms. However, training a probabilistic parser on a bigger
context requires much larger training corpora and more memory.

The advantage of probabilistic taggers is that when the tagger en-
counters an unknown word, it can use the distributional information
gathered from the n-grams to determine (or guess) the grammatical
class of the unknown word given its nearby context. Statistical taggers
can reach high accuracies; however, the results often saturate, at which
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point the performance of the system can no longer be improved.
Many modern taggers combine both statistical and rule-based method-

ologies; these systems are known as hybrid taggers. Since rule-based
taggers can accurately annotate large grammatical constructions, they
are used to analyze and mark up a given corpus. Statistical taggers are
then applied to disambiguate the results or to guess the tags for the
unknown words.

1.5 Applications in Corpus Linguistics

Most often, tagging is not treated as a self-sufficient processing module,
but is rather considered as a prerequisite for deeper analysis of text.
Hence, taggers are an important and integral part to a number of nat-
ural language processing applications, some of which are discussed in
more detail in this section. The section also outlines some of the main
applications in natural language processing that employ text corpora
for extracting information or for training purposes.

1.5.1 Lexicon Acquisition

Lexical acquisition has become an essential phase in building a nat-
ural language processing system because the final performance of the
model is often dependent on the quantity of the computational lexicon
associated with it. The morphological, syntactic, semantic and prag-
matic information provided in the lexicon play an important role in
applications such as information extraction, document summarization
or machine translation. Hence, a computational lexicon should contain
information about all potential word forms that the system may en-
counter in order to guide the text analysis. Different natural language
processing tasks, however, may require varying levels of detail or types
of information.

Taggers, and in particular part of speech taggers, are the preliminary
phase to most NLP applications. To accomplish this task successfully,
the system should be able to identify the possible wordforms in the lan-
guage. This could be accomplished by listing all morphological forms
of the words in the lexicon, of course, but most systems include a stem-
ming or morphological analysis module that reduces each word to its
lexeme form. Lexemes are then looked up in the computational lexicon.

Typically therefore, the lexicon associated with a POS tagger con-
sists of the lexemes or stem forms of each potential word along with
information on their grammatical categories (i.e., noun, adjective, verb,
conjunction, etc.). Semantic or subcategorization information is not
needed in POS tagging tasks unless the result is to be used as the in-
put to a parser or other more complex applications. If the tagger is to
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be used as part of a machine translation system, the lexemes should
also be associated with translations for the target languages. In addi-
tion, lexemes for irregular elements (e.g., irregular plurals in English)
may need to be marked explicitly in order to constrain morphological
or syntactic analyses.

Most taggers use a statistical model to select between ambiguous
tags. These approaches can achieve a high level of accuracy (close to
96-98%) but not if the original POS tags were wrong in the lexicon.
Although statistical taggers can ‘guess’ the part of speech for words
that were not found in the lexicon, this reduces the accuracy of the
tagged corpus.

Since tagging is generally the first step in many NLP applications,
and its output is directly fed into more complex tasks, taggers should
have a very low error-rate. And to achieve that, it is crucial that the
module be associated with a lexicon with high coverage of the words in
the language and an accurate list of attached parts of speech.

If the tagger output is used in a parsing application, then it is im-
portant to also include subcategorization information, which associates
a verb or noun with its related constituents. This information is of
particular importance in rule-based systems since the subcategoriza-
tion knowledge can restrict the number of potential rules that could
apply during parsing. This information is also utilized by statistical
approaches in disambiguation of phrasal boundaries since the syntactic
context can constrain the choices. Thus, a more detailed lexical entry
can constrain the possible parses, but it may also give rise to more com-
plexity and less speed during parsing. As always, each decision made
about the structure of the lexicon should attempt to find a balance be-
tween the complexity of the lexical items and the overall performance
of the system.

Certain natural language understanding applications such as a ques-
tion answering system, as well as information extraction tasks, use in-
formation from word senses to draw the relevant inferences. The compu-
tational lexicon associated with these models needs to reflect semantic
relations such as synonymy/antonymy as well as the hierarchical rela-
tions between words in order to provide an analysis for the ‘meaning’
of the sentence.

The information contained in a computational lexicon can range
from a list of wordforms or a list of lexemes to a highly structured
and fine-grained lexicon with full part of speech, morphological, se-
mantic and subcategorization information. More recent works such as
the Generative Lexicon approach have argued for a more structured
lexicon that incorporates insights from linguistic theory and studies on



Text Mining, Corpus Building and Testing / 27

May 6, 2003

event structure to represent lexical items (Pustejovsky, 1995).

Traditionally, lexicons in computational linguistics were small and
were constructed mainly by hand. However, as we saw in this section, a
complete and accurate lexicon can immensely improve natural language
processing. Furthermore, building a lexicon manually is extremely labor
intensive and costly. Nowadays, lexical information is readily available
in the form of machine readable dictionaries (or MRDs). Yet MRDs
may lack information required by a computational application. Further-
more, MRDs are not available in all languages and oftentimes, lexical
resources for lesser-studied languages need to be prepared from scratch.
MRDs and regular dictionaries are static in nature and sometimes do
not cover new words in different language registers. It is even more dif-
ficult to find a bilingual lexicon that contains direct and unambiguous
translations for machine translation purposes. Thus, the fundamental
problem of lexical acquisition is how to provide the lexical information
and quality required for computational systems.

Recently, attempts have been made in the lexicon acquisition com-
munity to gather lexical information from text corpora. The appeal
for using automatic methods to extract lexical knowledge is in that
corpora are now widely available allowing the researcher to collect a
representative sample of written or spoken language that reflects the
dynamic and changing nature of language. In addition, the ability to
automatize the process facilitates the creation of large lexicons without
the labor-intensive manual work traditionally involved in the process.

There is a vast field of corpus-based lexicon acquisition that has uti-
lized online textual material to extract lexical knowledge. The following
quote outlines some of these investigations:

“Corpus processing techniques demonstrated, among other things, how
certain categories of lexical properties could be identified by means of
empirical studies of word occurrences in large bodies of text. For in-
stance, paired corpora in two languages provide evidence that a lexi-
con could be induced from alignment of texts which are translations of
each other; word collocations can be distinguished from coincidental
co-occurrences; semantic analysis of phrasal segments points to evi-
dence for regular behavior of certain word classes; conversly, analysis
of patterns of parsed (or otherwise structurally annotated) texts re-
vealed the potential for deducing semantic information about lexical
classes.” (from Boguraev and Pustejovsky (1995), page 3)

1.5.2 Partial Parsing

Partial parsing (or underspecified analysis) is often used in natural
language processing to tag chunks of linguistic text rather than the full
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syntactic structure. Typically, partial parsers are limited to locating
noun phrases in a corpus, but have also been applied to prepositional
phrases. In certain cases, the parser may assign grammatical functions
such as subject or object to a noun phrase. These partial parses, based
on linguistic constituents, are crucial for improving the quality of entity
and fact extraction modules and are often used in question answering
systems as well. Partial parsing has also been used to train probabilistic
algorithms to automatically learn grammar rules or to disambiguate
tagger results.

Partial parsing emerged as a response to the difficulties inherent in
full syntactic parsing due to the ambiguity of grammars and length of
sentences. Instead, partial parsing techniques provide reliable syntactic
information while sacrificing the depth of analysis or the completeness
that could be obtained from a full parse.

In many systems, the partial parser is built on top of a tagger.
Chunks of sentential structure can be recovered by searching for pat-
terns of regular expressions over the output of the tagger. In partial
parsing, there is no resolution of attachments or subcategorization in-
formation. Typically, relative clauses are not handled in a partial parser
either, rather the NP chunks are recognized and tagged separately. An
example of a partially parsed sentence is given below (from (Abney,
1996a)).

[S

[NP The resulting formations]

[VP are found]

[PP along [NP an escarpment]]

][RC

[WhNP that]

[VP is known]

[PP as [NP the Fischer anomaly]]

]

The simplest method used for partial parsing is to delimit the bound-
aries of a phrase. The first step for partial parsing of a noun phrase, in
that instance, would be to distinguish the elements that could not be-
long to a simple NP (e.g., conjunctions or verbs). In many languages,
morphological cues are available for determining the delimiters of a
noun phrase such as case-marking. In other languages, the lack of a
boundary may be morphologically marked such as in “idafa” construc-
tions in Arabic, which are equivalent to possessive constructions in
English as far as the meaning is concerned.

If partial parsing is used as a precursor to full syntactic or semantic
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analysis, then the chunks recognized can be linked to each other by
lexical association or knowledge of syntactic frames. In certain appli-
cations, however, a full noun phrase or prepositional phrase parse is
not required. For instance, in recovering noun phrase chunks for infor-
mation extraction modules, the partial parse of a noun phrase should
consist solely of the “meaningful” elements. In other words, function
words such as determiners or even adjectives are not included in the
rules for partial parses of the noun phrase, since they do not contribute
to the main meaning of the nominal element being searched by the
information retrieval machine. Hence, in these applications, a “noun
phrase” may refer to something that is very different from the tradi-
tional linguistic usage. A detailed account of partial parsing is provided
in Butt and King, Chapter 6, this volume.

Partial parsing modules can be built as manual symbolic rules that
are used by the parser to recognize syntactic chunks. But many con-
temporary systems use machine learning techniques in an attempt to
acquire simple heuristics. Others may use a statistical tagger as the
underlying module but use rules for special cases. The statistical and
machine learning methods for partial parsers generally require a large
training corpus of manually tagged text. Hence, annotated corpora with
explicit boundary markers for noun phrases is a prerequisite for partial
parsing applications.

1.5.3 Word Sense Disambiguation

The word bat means a nocturnal animal, a baseball instrument or the
blinking of an eye. The goal of automatic word sense disambigua-

tion (WSD) models is to select the appropriate meaning to a given
word based on the linguistic context. Hence, the system should be able
to determine that bat in the sentence he picked up the bat and hit the
ball refers to the sports apparatus meaning of the word, while in the
sentence he saw the bats fly out of the cave, bat refers to the animal.
The automatic resolution of ambiguous meanings is a very difficult task
for computer systems, yet it stands at the basis of a number of very
important natural language applications, such as machine translation,
information retrieval and parsing.

The meaning of a word in a particular usage can only be determined
by examining its context. Thus, by looking at an ambiguous word such
as bank – the often cited example of polysemy, the disambiguator is
supposed to determine the sense invoked in the text, e.g., whether the
word refers to a financial institution or to the rising ground bordering a
river. Word sense disambiguation is an essential task in machine trans-
lation applications since the system needs to be able to distinguish the
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sense of bank in an English text and determine whether it should be
translated into the French banque (for the financial institution meaning)
or rive (for the river bank meaning). An information retrieval system
needs to be able to detect only the documents where the keyword be-
ing searched is used in the appropriate sense. For instance, if the query
is for ‘financial banks’ then the system should eliminate occurrences
of bank used in the river edge sense. Word sense disambiguation has
mostly been used to enhance part of speech tagging by distinguishing
senses among homographs belonging to the same syntactic category, or
to restrict the possible parses of a given sentence. Content or stylistic
analyses often use WSD to analyze the distribution of words signalling
a given concept or theme.

Clearly, a part of speech tagger and shallow parser will simplify the
process of word sense disambiguation by distinguishing the meanings
of the different syntactic categories. Hence, the WSD module does not
need to differentiate the verb meaning of bat, as in he didn’t bat an
eye, from the noun meanings. In addition, selectional restrictions can
help determine the sense intended for a given word. For example, the
word star can refer to a celebrity or to a celestial body. Given the sen-
tence the astronomer married the star, however, if the system knows
that the direct object of the verb marry is constrained to being ANI-
MATE, then only the celebrity meaning of star will be selected since it
belongs to the class of ANIMATE things. Word sense disambiguation
models thus often take advantage of world knowledge information in
order to determine the intended meaning of a particular word. Other
WSD systems also use less rigid selectional preferences or associations
in disambiguating polysemous words in a text. An interesting example
that clearly demonstrates the use of word associations is provided by
the sentence John put the pot in the dishwasher, where the word pot
is ambiguous. Using meaning associations, the word sense disambigua-
tion system should be able to determine that the sense of COOKING
VESSEL for pot and MACHINE FOR WASHING DISHES of dish-
washer are closely related, which would inhibit the linking of the sense
of HERB or ILLEGAL DRUG of pot. However, if the full context of
the sentence is John put the pot in the dishwasher; he could see that a
police car had pulled up in his driveway, then the meanings associated
with the word police car would activate the ILLEGAL DRUG meaning
of pot overriding the previous selection.9

There have been three main approaches to word sense disambigua-

9Example taken from syllabus by a course taught by Michael Gasser at Indiana
University.
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tion. Knowledge-based approaches employ lexical knowledge sources
and ontologies with information on selectional preferences, concept
associations, and syntactic categories. In corpus-based disambiguation
methods, the semantics of each polysemous lexical item is marked in a
training corpus. A machine learning algorithm is then used to form a
representation for each of the senses. Hybrid approaches combine both
methodologies. As in all other NLP applications, the use of corpora has
increased in recent years and a manually annotated training corpus is
often used to train statistical sense disambiguating modules. The se-
mantic features determining the meaning of each ambiguous word is
marked manually in the training corpus. Some researchers have tried
to match senses using an aligned parallel corpus (see next section) in
order to avoid hand-tagging the text.

Statistical based models that use supervised learning to attribute
senses to ambiguous words need a sense-tagged corpus for training pur-
poses. The sense with the highest probability computed on the basis of
the training data is selected by the system. As in other corpus-based
applications, a statistical model for WSD requires a large training set.
For word sense disambiguation applications, in particular, enormous
amounts of text are needed in order to ensure that all senses of a pol-
ysemous word are represented. There exist two possible methods for
assigning a sense to an ambiguous word: the use of distributional in-

formation and the use of context words. Distributional information
is the frequency distribution of a word’s senses, while context words
refers to the window of words found to the right and left of a certain
word. The statistical machine trains on the information about the sense
frequency as well as the contexts of previously disambiguated instances
of a word in the training corpus.

The training data in a text corpus are annotated with sense labels
that distinguish the various meanings of a word. For instance, to dif-
ferentiate the two senses of the word sentence, the item may be tagged
as sentence-judicial or sentence-grammatical depending on the context
and the meaning. One of the resources most often used in WSD appli-
cations is WordNet, created at Princeton University, which organizes
lexical information about English nouns, verbs, adjectives and adverbs,
in terms of word meanings rather than word forms. The lexical items
are arranged into synonym sets, each representing one underlying lexi-
cal concept.10 Similar resources are available for specific domains. For
example, the U.S. National Institute of Health has constructed an an-

10The home page for WordNet is located at
http://www.cogsci.princeton.edu/~wn/. To search for various senses of words in
WordNet, visit http://www.vancouver-webpages.com/wordnet.
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notated training corpus for the Biomedical domain consisting of about
5000 instances of highly frequent ambiguous medical concepts11.

1.5.4 Discourse Analysis

The goal of discourse analysis is to analyze text segments larger than
the sentence. This is in contrast with linguistic analyses that are con-
cerned with the study of grammar or of word structure. Researchers
working in this field of computational linguistics examine the larger
context of the discourse in order to understand how it affects the mean-
ing of the sentence or of the document. Computational approaches
to discourse analysis have been increasingly focused on empirical and
corpus-based methodologies to investigating textual meaning. These
approaches use a tagged corpus that has been annotated with vari-
ous discourse phenomena in order to induce algorithms for statistical
discourse analysis modules. Hence, the collection and annotation of
corpora is a prerequisite to investigations in discourse.

Newspaper articles and third person narratives may contain pas-
sages that objectively narrate events, but they also comprise sections
that express the characters’ or the writer’s thoughts, perceptions and
inner states. One of the main research topics in discourse analysis is
concerned with determining the psychological point of view (POV) of
the author or character of a text. This could be useful, for instance,
if an information analyst is looking for opinions in the press about a
specific event, or if the goal is to separate fact from beliefs and at-
titudes. The current approaches to determining the point of view in
computational linguistics have focused on creating annotated corpora
which are then used to train a statistical discourse tagger module to
automatically mark a corpus for point of view expressions. However,
annotating corpora for such discourse items is extremely difficult.

In order to annotate corpora for point of view analysis, humans need
to manually mark up texts with relevant tags to determine whether a
certain use of language is opinionated or expresses a certain attitude.
There are really no formal criteria for identifying these point of view
properties. Although several schemes have been proposed in the litera-
ture to tag elements that express the opinion of a person, an emotional
state or a mental perception, the annotation depends heavily on human
intuition. Furthermore, words should be analyzed within the context
of use, since they may convey a different perspective or state based
on the usage within a sentence or in the larger discourse. GATE is a
graphic interface tool that is available freely from Sheffield University

11http://wsd.nlm.nih.gov.
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and which can be used for annotating opinions in newspaper articles
(see http://gate.ac.uk).

As an example, let us consider the annotation standards used at
the University of Pittsburgh computer science department for tagging
discourse corpora. In general, annotations are applied to expressions
of opinion or attitude (e.g., John hates Bill or what an idiot!). Tags
are also used to mark the source (i.e., the person whose opinion is be-
ing expressed) and to determine the type of opinion (e.g., negative or
positive). Some opinions or states can be inferred. For instance, in the
sentence the people in the front of the room began to spontaneously ap-
plaud the President, the expression applaud indicates a positive emotion
or evaluation. Sometimes, words expressing an opinion are more subtle.
For instance, the italicized elements in ‘the so-called expert’ or ‘John
blathered on about something’ express the writer’s negative evaluation
or perception. Another instance of a writer’s attitude is represented
by the famous example of terrorist vs. freedom-fighter, since the choice
between these two words for describing a particular political group can
clearly indicate the opinion held by the writer or speaker.

Another key task in natural language processing applications has as
its goal to resolve anaphoric references in texts. This is of particular
importance in applications such as machine translation, information ex-
traction and question answering systems. Recently, the computational
treatment of anaphora has moved away from methods using extensive
linguistic knowledge and has instead focused on corpus-driven method-
ologies. Corpora are often annotated with coreferential links that can
then be used for empirical research, for training a statistical machine
to develop new rules and patterns, or for testing and evaluation of the
implemented approaches.

Mitkov et al. (2000) define anaphora as ‘the linguistic phenomena of
pointing back to a previously mentioned item in the text’ and corefer-

ence is described as ‘the act of referring to the same referent in the real
world’. According to these definitions, there may exist anaphora that do
not involve coreference (e.g., every participanti had to present hisj pa-
per). In theoretical linguistics, anaphoric resolution is mainly concerned
with the occurrence of anaphora and their antecedents within a sen-
tence. In computational discourse research, the resolution of anaphora
studies the context beyond a sentence and often requires the use of
world knowledge. Hence, in computational treatments, anaphora nor-
mally deal with the content of a document, whereas coreference can
operate across documents.

Annotating anaphora in a corpus is an extremely difficult and labor-
intensive process, since determining which items should be tagged and
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what type of annotation scheme should be used is not clear-cut and
there are no standards. This task is particularly difficult when the an-
tecedent is located beyond the boundaries of the immediate sentence in
which the anaphor appears. Coreference annotations often vary since
they are subject to human judgment and require an incredible amount
of concentration. In addition, certain annotation schemes only tag coref-
erential elements while others also tag quantificational noun phrases,
such as every linguist or many students, which are sometimes treated
as non-referring noun phrases.

The Lancaster Anaphoric Treebank, which consists of a 100,000 word
corpus collected from Associated Press sources in 1991, is tagged for
noun phrase and pronominal anaphora coreferences and ellipsis. There
is ongoing work in Xerox Parc and University of Stendahl in Greno-
ble which is expected to deliver a one million word annotated corpus
in French. Parallel corpora annotated for anaphoric resolution are ex-
tremely rare. For further information on various annotation schemes
and tools, the reader is referred to Mitkov et al. (2000).

1.5.5 Machine Translation and Parallel Corpora

One of the most important applications in natural language process-
ing is Machine Translation (MT), the goal of which is to automatically
translate text or speech from one language to another. There are numer-
ous approaches to the MT problem ranging from full knowledge-based
systems for a single language to interlingua methods, with knowledge
representation formalisms for various languages, to purely statistical
approaches to machine translation. Most current systems are a mix of
probabilistic and non-probabilistic modules.

Machine Translation includes many of the NLP components already
discussed such as a multilingual lexicon, a tagger, a parser and a word-
sense disambiguation module, all of which take advantage of text cor-
pora either for extracting knowledge or for training the statistical com-
ponents of the system. Specific to MT is the use of parallel corpora,
which consist of the same text translated into several languages.

Before a parallel corpus can be used, however, it needs to be aligned.
The objective in text alignment is to match sentences, phrases and
words in the two texts. Once we create an explicit link between the
elements that are mutual translations, we obtain an aligned corpus

that can be used to create bilingual dictionaries or parallel grammars.
An aligned corpus can also be helpful as a knowledge source for word
sense disambiguation or for multilingual information retrieval.

Text alignment is not a simple task. Often translations are not re-
flecting the original structure or wording, since human translators often
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rearrange the text to obtain a better flow in the target language or to
convey certain idiomatic usages. Oftentimes, languages organize their
sentence structure quite differently. One of the best-known examples
in linguistics is the way in which English and French represent manner
of motion. As the examples below illustrate, the manner of motion is
expressed by the verb in English while it is represented by the adverb
in French.

(7) The boat floated across the river.

(8) Le bateau a traversé la rivière en flottant.
the boat crossed the river floating

Furthermore, translations do not necessarily correspond directly at
the word level. For instance, the English verbal expression make an an-
nouncement would be translated as the single verb annoncer in French.

In general, the more accurate and literal the translations are in the
parallel corpora, the easier it would be to automatically align sentences
and lexical items. Section 1.2.1 introduced parallel corpora obtained
mainly from governmental sources which provide a large supply of mul-
tilingual texts with rather literal translations of each other. Other mul-
tilingual online texts, such as religious texts or translations of literary
works, can also serve as parallel corpora, but these texts usually contain
less literal translations. In addition, texts comprising languages that are
very different from each other (i.e., do not have cognates, are not writ-
ten in the same alphabet, and have very distinct syntactic structures)
will be more difficult to align automatically.

Many researchers have examined methods for aligning sentences in
multilingual parallel texts. Some aligned large quantities of text by com-
paring the lengths of textual units. Other approaches use lexical content
to match sentences across languages. For instance, Church (1993) aligns
texts by matching cognates (such as the French flotter and the English
float) and similar character strings. Kay and Röscheisen (1993) uses a
parallel alignment of lexical items in order to match up sentences in
parallel texts. Making matches at the level of the word can be done us-
ing a small bilingual dictionary or by examining the distribution of the
words within sentences in the two corpora. Once sentences are aligned
in parallel texts, the words and phrases can be matched in order to
extract corresponding translations for bilingual dictionaries. In addi-
tion to developing bilingual lexicons, parallel corpora have been used
for extracting grammar rules or structural patterns from the text.

Statistical machine translation employs probabilistic methods for
learning from aligned corpora. As in all cases discussed earlier, the
quality of a statistical machine is directly related to the accuracy of the
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training corpus, and therefore, the alignment of the textual corpora is
crucial for training a statistical MT system. In order to make serious im-
provements in translation quality, however, the statistical translation
model needs to be able to train on more detailed linguistic features
such as the part of speech, the subcategorization frames of a verb, and
lexical co-occurrence probabilities for nonadjacent items. Hence, to im-
prove statistical MT models, parallel corpora are usually annotated to
varying degrees.

The Natural Language Group at the University of Maryland, for ex-
ample, takes advantage of existing lexicons, morphology tools, ontolo-
gies and other resources for English. The English corpus is manually
annotated but the target language annotation is created via a projec-
tion from the English side using automatic alignments of the parallel
texts. The target language corpus is then used as a training corpus for
various machine learning components for taggers, morphological ana-
lyzers, dependency parsers, noun phrase groupers, word sense taggers
and translation models.

Corpus-based, statistical methods are also used in speech transla-
tion applications where the translation rules are learned automatically
from a parallel corpus of spoken language. Although the probabilis-
tic translation paradigm reduces the time spent in building a machine
translation system, it also relies completely on the availability of an ac-
curate parallel corpus; thus, MT models for speech provide good results
in domain-specific applications mainly.

1.6 Corpus Processing Tools

This section introduces the reader to some of the basic tools needed
for working with corpora. There are a number of techniques and opera-
tions that can be performed on unmarked language corpora in order to
analyze the data. Basic operations are used to count words or to find
the common contexts in which words appear. Typically, existing tools
and some limited programming is enough to manipulate text corpora
and perform low-level analysis. Since the most common and important
set of tools are the UNIX system tools, the main chunk of this section
is dedicated to the description of their usage.

1.6.1 UNIX Tools

Almost anyone who works with language corpora will need to use the
UNIX tools at some point, hence it is important that researchers in
computational linguistics be familiar with them. Usually, one can find
a pre-installed text editor, such as Emacs or vi, on UNIX systems that
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can be used to look at the files and to edit their contents.12

Generally, UNIX tools use regular expressions to detect certain
patterns in a text. Regular expressions are a powerful tool that allow
the researcher to find complex patterns when a match against a full
word or sequence of characters is not possible. For instance, to search
for any English word containing only capital letters, the regular expres-
sion [A-Z]+ can be used, which allows for any sequence of one or more
capital letters between A and Z. If you are looking for the word allott-
ment in a corpus but realize that there may be various misspellings or
forms of the word, you may want to try the following regular expression
pattern:

(a|A)l+ot+[a-z]*

The (a|A) will match either an uppercase or lowercase letter ‘a’,
followed by a letter ‘l’ which may appear one or more times (indicated
by the +). Similarly, the pattern allows for one or more ‘t’ letters in the
word. The string allott can also be followed by other lowercase letters
or not; the Kleene star * means zero or more occurrences of the imme-
diately previous character or regular expression. For an introduction to
regular expressions, see Jurafsky and Martin (2000), Chapter 2.

1.6.2 Word Counts

Once you have downloaded some text, you may wish to perform a word

count, by counting the total number of words in a text or by counting
the number of times each unique word appears in a text. This could
then be used, for instance, to extract only words that appear in the
text more than a certain number of times. Also, frequency numbers
associated with word lists are often used by statistical machines to
assign weights in order to disambiguate information. UNIX already
contains some tools that would facilitate this task.

In order to count the number of words in a text, the command
wc (for word count) is used. Consider the text file below named
buckyball.txt.

A few years ago, scientists made an exciting breakthrough

that could revolutionize the world of science, with

particular emphasis on chemistry. Called

buckminsterfullerene, or the buckyball, for short, this

newly-discovered molecule has scientists the world over

scrambling to find new and unusual uses for this unique

molecular oddity.

12A convenient version of these tools for use on Windows machines can be found
at www.cygwin.com.
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molecular oddity.

To find out how many words exist in your corpus, type

wc -w buckyball.txt

You will see that the result is 51 word tokens. You may have noticed,
however, that the last line of this file is repeated twice. One option is to
use the command uniq which can be used to remove duplicate adjacent
lines. So typing

uniq buckyball.txt | wc -w | more

removes the last line, counts the number of words and then prints
the result on the screen.13 This time there are 49 word tokens in the
file.

However, there is a difference between a word token and a word

type. If one is interested in the length of a text, then a word token
count will suffice. But if we are interested in determining the number
of different words in a text, then we need to count the occurrence of
word types.

The command tr is used in UNIX to translate sets of characters.
For example, the following command will replace all the occurrences
of the vowels e, o or i, in the text file by X. The left angle bracket
indicates that buckyball.txt is the input file.

tr ‘eoi’ ’X’ < buckyball.txt | more

The result of this command is shown below:

A fXw yXars agX, scXXntXsts madX an XxcXtXng brXakthrXugh

that cXuld rXvXlutXXnXzX thX wXrld Xf scXXncX, wXth

partXcular XmphasXs Xn chXmXstry. CallXd

buckmXnstXrfullXrXnX, Xr thX buckyball, fXr shXrt, thXs

nXwly-dXscXvXrXd mXlXculX has scXXntXsts thX wXrld XvXr

scramblXng tX fXnd nXw and unusual usXs fXr thXs unXquX

mXlXcular XddXty.

mXlXcular XddXty.

tr can also be used to tokenize a text, by displaying each word on a
separate line. This can be achieved by ‘translating’ all non-word items
into a new line character (ASCII code 012 or \n), where non-word
items include punctuation marks, numbers and space characters, and
then taking the complement. Hence consider a new shorter file called
buckytest.txt with the following content:

13The pipeline or | is used to represent a chain of commands in UNIX whereby
the output of the first command is fed to the second one, and so on.



Text Mining, Corpus Building and Testing / 39

May 6, 2003

TABLE 1 Word Tokens from Buckyball file.

The the known
buckyball early forms
is s of
a Before pure
new this carbon
form exhilerating to
of discovery be
carbon there found
previously were on
undiscovered only Earth
until two

The buckyball is a new form of carbon, previously

undiscovered until the early 1980’s. Before this

exhilerating discovery, there were only two known

forms of "pure" carbon to be found on Earth.

The following command will produce a list of new lines (or blank
lines) with several punctuation marks in between.

tr ’a-zA-Z’ \n < buckytest.txt | more

Since we actually want the words and not the punctuation marks we
use option -c to map every non-letter or complement of letter into a
new line.

tr -c ’a-zA-Z’ \n < buckytest.txt | more

This in effect replaces all punctuation, numbers and space characters
by a new line. If you try this command you will notice that where we
once had punctuation or number characters, we now have blank lines.
To eliminate these blank lines, the option -s is used to make sure that
multiple cases of \n do not occur. The command

tr -cs ’a-zA-Z’ \n < buckytest.txt | more

produces the result shown in Table 1.
Table 1 is a wordlist of tokens that appear in the file buckytest.txt,

but it includes duplicates of the words of and carbon. This can be seen
more clearly if we sort the words alphabetically by using the sort

command.14

tr -cs ’a-zA-Z’ \n | sort | more

14Note that this command only sorts according to the English alphabet.
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TABLE 2 Sorted unique word tokens from Buckyball file.

Before forms the
Earth found there
The is this
a known to
be new two
buckyball of undiscovered
carbon on until
discovery only were
early previously
exhilerating pure
form s

In order to remove these duplicates and obtain a list of word types
only, the following command can be used:

tr -cs ’a-zA-Z’ \n | sort -u | more

The option -u refers to unique. The result of the unique-sort is shown
in Table 2.

One of the most common operations performed on a text file is to
compute the number of times a certain word occurs in the text. This
can be achieved by the command uniq -c. The option -c gives the
number of times a line occurred. Hence, if you sort a wordlist, then
run the uniq command to strip off duplicate lines, the option -c can
be used to announce how many times the line occurred originally. This
command is very useful in determining the frequency of occurrence of
words in a text file as illustrated below.

tr -cs ’A-Za-z’ \n < buckytest.txt | sort |

uniq -c > buckyball-freq.txt

The result in this case is illustrated in Table 3.
The frequency file can be sorted according to the frequency of the

words. sort -n allows numerical ordering and sort -n -r puts the
word with the highest frequency on top.

By looking at the results in Table 3, you will notice that there exist
a number of errors or redundancies. For instance, you will notice that
the and The are treated as distinct words. If we wish to treat both
capitalized and lowercase instances of a word as a single word type,
then we could convert all words to either uppercase or lowercase. This
is appropriate in determining word frequency or when analyzing the
usage of definite articles in English noun phrases. However, removing
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TABLE 3 Word frequency from Buckyball file.

1 Before 1 form 1 pure
1 Earth 1 forms 1 s
1 The 1 found 1 the
1 a 1 is 1 there
1 be 1 known 1 this
1 buckyball 1 new 1 to
2 carbon 2 of 1 two
1 discovery 1 on 1 undiscovered
1 early 1 only 1 until
1 exhilerating 1 previously 1 were

distinctions between upper- and lowercase letters may raise ambiguities
at later stages. For example, this operation may remove the capitaliza-
tion from proper names thus making it difficult to recognize them as
such.

Another redundancy in the wordlist in Table 3 is that the singular
and plural forms of the noun form are treated separately. In more in-
volved cases, we may even wish to treat were and be as a representative
of the same word in order to get an accurate count of word types.

This can be achieved by lemmatization or stemming, which strips off
the affixes on a word to return its lexeme or stem form. Thus, a stemmer
module needs to be applied to our buckyball-freq.txt file in order to
strip off the plural ending of forms and to represent the irregular verb
form were as be. Note that a stemmer does not provide a morphological
analysis of the word; it simply strips off the inflectional affixes and
returns the corresponding lexeme(s). For example, a stemmer need not
know whether the use of the form lying is related to the verb meaning
‘telling untruth’ or the verb meaning ‘to prostrate oneself’. All the
stemmer needs to know is that the stem form is lie.

Finally, perhaps we do not want to consider the s character (remain-
ing from the 1980’s) as a separate word. This brings up the discussion
addressed in the section on Tokenization on how to treat cliticized el-
ements like n’t or ’ll. Some systems apply a preprocessor to separate
these into the words not and will respectively, before removing all punc-
tuation from the text. The ’s is a more difficult problem since it could
represent an abbreviated form of the verb is, the possessive marker, or
in the Buckyball example a marker of decades or dates. In such cases,
either preprocessing is required to distinguish these cases or a mor-
phological analyzer is used. In some cases, you may want to include
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TABLE 4 Word Type frequency from Buckyball file.

2 the 1 only
2 of 1 on
2 form 1 new
2 carbon 1 known
2 be 1 is
1 until 1 found
1 undiscovered 1 exhilerating
1 two 1 earth
1 to 1 early
1 this 1 discovery
1 there 1 buckyball
1 pure 1 before
1 previously 1 a

the frequency of occurrence of the ’s regardless of its function – for
instance, if you would like to know what type of words should be ac-
counted for in your lexicon or stemmer. For our purposes here, we could
simply eliminate all ’s occurrences after numbers prior to applying the
tr command.

If we apply all these changes to our sample file and run a frequency
count on the result, we will obtain the results shown in Table 4.

Another useful command in UNIX is cut which allows one to extract
a whole column from a text. For example, in the previous results, the
word types are associated with a frequency number. But let’s say you
are interested in knowing the word types of the text file but do not care
about the frequency numbers. In that case, you can use cut to extract
only the second column of word types and place it into a new output
file.

cut -f2 -d’ ’ < buckyball-freq.txt > buckywords.txt

The option -d is used to indicate the type of delimiter separating
the columns. The default delimiter for the cut command is the tab,
hence if the text contains a different type of delimiter such as the space
in this case, it has to be explicitly provided inbetween the apostrophes
following the option -d. In other words, if the delimiter in the file is a
comma, then the command would be written as

cut -f2 -d’,’ < buckyball-freq.txt > buckywords.txt

In analyzing corpora, it is sometimes useful to be able to locate a
certain pattern in a particular place in the text. The UNIX command
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grep\index{grep} can be used for this purpose. Some useful options
available with grep are -i for ignoring the case of the character. The
option -c displays the number of matching lines and -v displays all lines
except for the ones containing the pattern specified. Some examples:

grep ’support’ find all lines containing the word ‘support’
grep ^[0-9] find all lines beginning with a number
grep -i ^[aeiou] find all lines starting with a vowel,

regardless of case
grep -v ’support’ find all lines that do not contain the word

‘support’

In addition to the UNIX tools described here, the shell languages
SED and AWK are also very powerful in manipulating text. However,
the most widely used programming language for corpus manipulation is
PERL, which is available free of charge. PERL is very easy to pick up
and allows the user to utilize regular expressions to search for patterns
and perform powerful string manipulations.

1.6.3 Concordances

When building a computational lexicon or while developing a grammar
for a language, it may be beneficial to investigate the context in which
certain words appear. By studying the context of a verb, for instance, it
is often possible to figure out what the selectional requirements of the
lexical item are and whether there are intervening elements between the
verb and its arguments. This can be done by automatically extracting
any occurrence of the word under investigation, along with a number
of the tokens to its left and right. In other words, the word of interest is
given with its context of use. The surrounding context can then be used
to extract information manually by studying the data or as a learning
tool for statistical parsers. The tool typically used for such studies is
the Key Word in Context or KWIC concordancing program. This
tool extracts all occurrences of the word of interest and displays it with
the word lined up in the center and the surrounding context on the two
sides. A good place for getting a sense of what concordance results look
like is the Bank of English demonstration page15.

As an example, consider we are interested in determining what type
of particles are associated with the verb pick in English. In order to
accomplish this, we search for all occurrences of the verb within our
corpus. Some of the Bank of English results for this query are displayed

15http://titania.cobuild.collins.co.uk/form.html.
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Why by 10 Celsius, to pick a number, and not by 12 or 8 ? And,
somebody was trying to pick a fight, I would always see to it

blow and my neck ached. Pick her up and carry her up the hill,”
isn’t going to pick him up. But the military radar at

then the state has to pick it up. Somebody has to pay for it.
are necessary, then pick one or two stocks or equity funds,

Take your time, pick out your targets. Let’s keep them at
the bristles retract. We pick pink, green and/or red for you.

behaviors. They pick the baby up when he cries, wait for
unannounced, waiting to pick up the keys to the cabin they rented

it means that teens pick up most of their sexual knowledge
that we talked about. Pick up the pace as quickly as possible
here and that you can pick up the telephone and call her or–
a Volvo 340, a Sierra pick -up and a Ford Capri. All were local

or stripping only. Pick -up and delivery. Fast service.
schedule until the 9 [f] p.m. pick -up time. [p] Facilities for

were only too glad to pick up the tab - not only for this
investors are starting to pick up, but you also have France and

FIGURE 3 Concordance results for the verb pick.

in Figure 3.

As is clear from these partial concordance results, the verb pick is
most often used with the particle up in a transitive setting, but it also
appears with the particle out as in pick out your targets. In addition,
these results show that pick can also be used on its own as a transitive
verb as in pick one or two stocks. Hence, if the lexicographer is to mark
subcategorized particles for this verb, he or she will need to include up
and out as particles associated with the lexical entry.

Note also that pick-up with a hyphen is used as a noun in Pick-up
and delivery. In the automotive meaning, pick-up can be used either as a
noun (Sierra pick-up) or as an adjective (pick-up truck). More interest-
ingly, however, the results of a concordance tool can also demonstrate
whether there are intervening materials between the verb and the par-
ticle. This information is useful for developing language grammars. In
the examples in Figure 3, pick and up are sometimes separated by an
intervening pronoun as in pick her up or by a full noun phrase as in
pick the baby up or pick some things up. Yet further investigation would
show that this is directly related to the meaning of the verb, since the
particle cannot be separated from the verb in intransitive contexts such
as regional investors are starting to pick up.

Furthermore, this kind of concordance tools can be used to locate
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fit over built-in appliances to give a fully fitted look. Note that
people, the ones who don’t really give a damn, and the smartasses

have a tangy, salty taste and give a pleasant piquance to salads
would result if Pakistan were to give active support to the Kashmiri
of your travel arrangements and give assistance around the world
soldiers: they had wanted him to give away the position of a partisan

is mistaken.j Even if we could give credence to the idea of
advisors will also be on hand to give free advice and information on

afterwards when he came to give her daughter piano lessons. ‘He
opposite–come in off the road and give herself over to prayer–I suspect
with the other kids. All I did was give him a telephone number where
over him at his christening [p] [p] Give him an incentive! There will

it was to keep Henry alive, to give him heart, for his drowned
Reynolds says it needs them to give insight into the motivation of

happily enough. He said he would give me a call - he always called.
determined that she would not give up her career. [p] A charity for

FIGURE 4 Concordance results for the verb give.

certain idiomatic expressions such as pick up the pace, pick up the tab
or pick a fight. More examples of idiomatic expressions are available
for the verb give in Figure 4. By extracting the context in which the
verb appears, we can locate a number of idiomatic uses for this verb as
in give a damn, give a look, give support PP[to], give assistance, give
away, give heart, give credence PP[to], etc.

Although KWIC is the most common method for looking at con-
cordances, one may also choose to simply extract all the sentences in
which a certain word appears, rather than looking at the few tokens
to the left and right of the keyword. The programming approach to
making a KWIC index is described in detail in Aho et al. (1988).

1.6.4 Collocations

Concordance analysis is a useful tool for investigating the context in
which keywords appear, but it is not very efficient for real quantitative
analysis. Concordance results are not ordered by frequency and the
number of hits may be very high. In order to inspect the context in
which a particular keyword appears more efficiently, researchers often
turn to collocation analysis.

A Collocation is an expression that consists of a number of words
within a short distance of each other. These words generally corre-
spond to a conventional way of expressing the concept. The degree of
idiomaticity of a collocation is not very clear. For instance, an expres-
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sion such as decaffeinated tea or file a lawsuit is a collocation as well as
the compound expression weapons of mass destruction or the phrasal
verb show off.

In general, however, a collocation is described as lacking composi-

tionality. If an expression is compositional, then its meaning can be
derived by taking into account the meaning of its parts. An example
of a compositional expression is television show. Idioms are the un-
compositional expressions such as kick the bucket meaning ‘to die’ or
take a shower. Hence, collocations are generally construed as noncom-
positional in character. It is crucial to locate such noncompositional
expressions in computational lexicography. Since the meaning of the
whole cannot be constructed based on the meaning of the parts, such
expressions are usually listed in the lexicon. Identifying collocations
is also important in parsing in order to ensure that the collocations
are given preference and thus the correct parse tree is selected. The
study of collocations is also central to research on a contextual theory
of meaning or language use.

There are many works within the field of linguistics focusing on what
constitutes an idiom or complex predicate and in order to determine
its properties. In computational linguistics, collocations are sometimes
identified by attempting to translate them into another language. If the
translation cannot be performed by translating the subparts, then it is
to be treated as a collocation. This test is particularly true for building
lexicons for machine translation purposes. For example, the English
expression take a test cannot be translated into French as prendre un
examen, but rather it should be translated as passer un examen. In such
circumstances, the lexicographer may choose to list these expressions
in the lexicon. Sometimes, collocations are defined in computational
linguistics as expressions that are static. In these cases, the test is to see
whether the internal elements within an expression could be modified
or whether the two elements may be separated from each other by
intervening material. For instance, the two parts of the phrasal verb
pick up seen earlier in the section can often be separated by the direct
object argument. Similarly, in all the phrasal verbs (as in pick up) as
well as in light verb constructions (as in make a decision), the first (i.e.,
verbal) element can take inflectional morphology. If these expressions
were listed in the lexicon as a static collocation, then they could not
undergo morphological analysis correctly, since they would be treated as
a single unit. Within the field of computational linguistics, sometimes
proper names are treated as collocations as in Vaclav Havel or New
York Stock Exchange.

There are several methods for computing collocations in a text cor-
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pus, the simplest of which is to simply calculate the frequency or the
number of times the elements within an expression appear next to each
other within the text. It has been argued, however, that neither fre-
quency nor adjacency are sufficient parameters for locating collocations.
In a moderately large corpus, a true collocation may only appear a few
times: In a 22 million word corpus made of Wall Street Journal and
San Jose Mercury Times articles, the expression “emotional baggage”
occurred only 3 times; certainly not frequent, but it is still considered
a collocation. Also, elements that are considered to be parts of colloca-
tions may allow intervening material as in filing a class action lawsuit.
Some approaches have overcome the word adjacency limitation by al-
lowing a window of up to 4 or 5 words for collocation searches. However,
although dog and bark often appear very close to each other within a
sentence, they are not to be treated as a collocation. Some researchers
have opted to associate more weight to collocates that occur closer to
each other.

Current systems for extracting collocations from text corpora first
locate the word under investigation and identify possible concordances.
The second step is then to use frequency counts and make more com-
plex statistical observations about the word in question as well as its
collocates. What a “statistically significant word pair” consists of, how-
ever, is not completely clear. Chapter 5 in Manning and Schütze (1999)
presents some of the methods and computations used to detect collo-
cations such as Mutual Information and t-scores.

Let us take the results shown in Table 5 for the query word show.
In the first column, the table lists the words that appeared in the
corpus with show. The second column lists the frequency with which
the collocate word appeared within the text; as can be seen from the
numbers, the definite article the has a very high frequency of occurrence.
The third column lists the Joint Frequency which refers to the bigram
frequency; in other words, this column refers to the number of times
show and the collocate appeared next to each other (i.e., within four
words of each other). However, just looking at bigrams is not a very
accurate method of identifying collocations. As the reader can see from
the results in Table 5, the most frequent bigram seems to be the show,
which is certainly not to be treated as a collocation. Hence, simply
taking into account the raw frequency of cooccurrence is not sufficient
to detect collocations since it would most often place function words
such as the and of at the top of the list simply because they are the
most frequent words in English language in general.

The Mutual Information score is often used to extract colloca-
tions and it characterizes the extent to which the observed frequency
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TABLE 5 Collocate t-score for show (Bank of English corpus).

Collocate Corpus Freq Joint Freq t-score

the 2872094 10527 28.968403
to 1375856 5690 27.454145
on 393554 2048 22.379674
tv 9132 384 18.370103
how 58166 572 17.519233
that 594996 2407 17.160445
will 152423 886 16.296037
figures 4908 282 16.024071
at 292324 1311 14.970991
off 52036 397 13.055228
motor 3207 180 12.787644
radio 9684 203 12.459955
chat 1145 158 12.330197
polls 1313 142 11.626544
a 1228514 3925 11.069379
late 11128 161 10.381677

of cooccurrence is different from when there is no collocation in the
context of the word under investigation. In other words, the question
is whether the word show has an effect on the presence of e.g., the or
figures or off. If the has an overall relative frequency of 1 in 20, then we
would expect it to occur with the same relative frequency regardless
of the presence of show in its context. If, on the other hand, Mutual
Information, or rather the difference between the default or expected
relative frequency and the actual frequency of cooccurrence with the
word of interest, is very large, then this is indicative of a strong collo-
cation possibility.

This approach, however, allows a nonfrequent element that may
cooccur with the word under investigation without forming a collo-
cation with it to give rise to very high Mutual Information scores. For
instance, the adjective serendipity may appear within the context of
show. Since it is a word of very low frequency (i.e., has low expected
frequency), its presence in the vicinity of show would be given a very
high value (i.e., high observed frequency). To put it simply, there isn’t
enough evidence for the statistical machine (or for a child learning
a language for that matter) to be able to determine with confidence
whether two cooccurring words that have been observed only once are
to be associated strongly with each other or not. T-score is then used
to indicate the level of confidence in the decision or how probable a
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particular proposed collocation really is. Since the frequencies of word
occurrences are used to compute the t-score for a collocation, the score
is higher for more frequent lexical items.

The choice between Mutual Information and t-score depends on the
corpus being analyzed and the purpose. The Bank of English collocation
finder takes into account both Mutual Information and t-score results:

“In practical terms, raw frequency or j(x) won’t tell you much at all
about collocation: you’ll simply discover what you already knew that
“the” is a *very* frequent word and seems to co-occur with just about
everything. MI is the proper measure of strength of association: if the
MI score is high, then observed j(x) is massively greater than expected,
BUT you’ve got to watch out for the low j(x) frequencies because these
are very likely to be freaks of chance, not consistent trends. T-score
is best of the lot, because it highlights those collocations where j(x) is
high enough not to be unreliable and where the strength of association
is distinctly measurable [...] If a collocate appears in the top of both
MI and t-score lists it is clearly a humdinger of a collocate, rock-solid,
typical, frequent, strongly associated with its node word, recurrent,
reliable, etc etc etc.”

1.6.5 Testing and Evaluation

In addition to a collection of corpora for research and training purposes,
there is also a need for consciously created collections of data to be used
for evaluating and testing the performance of NLP systems. In particu-
lar, when using statistical algorithms, it is crucial to construct a set of
test corpora distinct from the set of data the statistical machine was
trained on, in order to obtain an accurate evaluation. Just as corpora
designed for training or research purposes need to be representative
and balanced, so do test data.

Typical test collections are annotated for the problem under study.
Hence, a truthfile or annotated test corpus for a tagger should con-
tain the relevant part of speech labels and the test corpus for a parser
should consist of accurately tagged syntactic phrases. The standard
measurements to evaluate an information retrieval system are recall, the
probability that an item may be retrieved, and precision, the probabil-
ity that a retrieved item may be relevant. Other important evaluation
measurements are the notions of accuracy and coverage:

Accuracy = C/P and Coverage = P/T

where C is the number of items correctly inferred, P is the number
of items that have been tagged or for which the machine has made a
prediction, and T represents the total number of items in the test data.
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The number of correct results are determined by comparing the NLP
module’s output to the truthfile prepared for testing.

For example, when measuring the results of a part of speech tagger
for a test corpus of 100 words where 50 tags have been assigned a
POS, of which 2 are wrong and 48 are correct, we obtain the following
numbers:16

Accuracy = 48/50 = 96%
Coverage = 50/100 = 50%

In general, however, in order to obtain a fair evaluation of how the
NLP model is functioning, it must be tested on a set of data that have
not been seen before. The statistical models, in particular, expect phe-
nomena that they have already been trained on, hence it is important
to test on a new collection of data. Furthermore, it is also beneficial
to evaluate the model on a structure or word or other types of phe-
nomena that it has never encountered before in order to evaluate the
statistical machine’s ability to infer in new contexts. Test data should
be large enough to be representative of the domain in question and the
complexity of the language phenomena under study.

It is generally a good idea to separate a set of data into a training
set and a test set before beginning the project. The test data could
consist of only about 5 to 10% of the total corpora as long as it is large
enough to be representative and reliable. Although some researchers
consciously select specific phenomena to test the NLP system on, test
data are most often a random collection of corpus material for the
language or domain under study. A better methodology would be to
have two distinct test sets as well where one is used as a development
test set. This set will be used for successive trials of the system, the
results of which are used to improve the NLP model. The second test
set will be used as a final test collection.

When constructing a test set or truthfile, the following criteria should
be taken into account:

. Consistency:

The researcher needs to provide a predefined annotation scheme that
would best reflect the linguistic phenomena being investigated or lan-
guage properties that need to be marked for the user. This markup
scheme is used to create a large enough truthfile in order to evaluate
the output of the NLP module.

. Size of Tagset:

16Sometimes, the researcher may also need to take into account the ambiguity of
the tags if the system does not produce disambiguated results.
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Although a bigger tagset may capture more detailed distinctions, it
is also harder to train for a statistical machine since larger corpora
are required, and therefore, the model may give rise to a higher
error rate. Note that a larger tagset does not make much difference
in manual tagging.

. Linguistic Content:

It is important that the tags or the phrase brackets used in the NLP
module correspond to the linguistic phenomena that need to be cap-
tured. The contribution that a particular tag or bracketing distinct-
beforeion makes to the successive applications should be taken into
account when designing the annotation scheme.

The preparation of a training set and that of a test set both require
labor-intensive work, since the items in the corpus need to be manually
annotated in each case. The training set is used to train the statistical
machine in order to induce the patterns in the language phenomena
under study, and the truthfile or test set is used to evaluate the final
performance of the system. Hence, although statistical systems do not
require time spent creating knowledge sources and grammar rules, they
do need a lot of time in creating the various corpus collections used for
training and testing the statistical algorithms.

1.7 Symbolic and Statistical Paradigms

The field of computational linguistics has historically been character-
ized by the conflict between the symbolic and statistical approaches
to language. This rift, which was triggered by the publication of Syn-
tactic Structures in 1957, has at its core the questions concerning the
role of quantitative measures and the type of data to be investigated in
modeling natural language. The computational approaches to language
since the 1960s were mostly dominated by the perspectives of gener-
ative theory and concentrated on building of linguistic models based
on formal grammars and knowledge sources. Since the 1990s, however,
the renewed interest in statistical models, coupled with recent techno-
logical advances (see 1.1), have given rise to the importance of large
corpora sets within the field of computational linguistics. Other related
aspects of the debate have centered on the nature of language, the role
of probability in human language computation, and the competence-
performance distinction.

These different computational programs that have been at odds for
decades have actually emerged from two different approaches to lan-
guage with very distinct goals and methodologies that are, in fact,
complementary since they try to account for different aspects of hu-
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man language computation. Ronald Kaplan of PARC notes:

“The statistical and symbolic approaches to language have emerged
from different starting points and methodologies and have tended to
focus on different goals. The resulting tension and confusion has ob-
scured the fact that both approaches can make crucial and often com-
plementary contributions to a deeper understanding of how language
works.” (Klavans and Resnik (1996), back cover)

In 1994, a workshop entitled The Balancing Act was held at the
32nd Annual Meeting of the Association for Computational Linguistics
at the New Mexico State University in Las Cruces, with the goal of
starting a dialogue between researchers on both sides of the debate and
emphasizing the complementary nature of the two approaches. Since
then, the field has seen an increase in the number of hybrid approaches
combining symbolic and statistical methodologies to modeling natural
language by bringing together the more linguistically motivated ap-
proaches and the more corpus-driven systems.

1.7.1 Distinct Goals

In Syntactic Structures, Chomsky argued that broad coverage of lan-
guage data gathered from naturally occurring textual or spoken mate-
rial is not able to contribute to an ‘explanatory theory’ of language.17

According to Chomsky, quantitative approaches would fall under the
category of ‘descriptive adequacy’. Indeed, most computational linguis-
tic work aim at determining the patterns that govern the observed lan-
guage data and there is little concern in the field with how humans
process or acquire languages. Hence, the main goal of current com-
putational approaches is to obtain a system to be used for practical
applications, which can be robust, display high speed and have broad
coverage. Since the ultimate goal of these systems is not necessarily ad-
vancing the scientific understanding of human language computation,
or providing an explanatory theory of the language faculty, then the
methodology used for developing these systems can indeed consist of

17Chomsky developed a classification of linguistic investigation by outlining three
levels of adequacy– observational, descriptive, and explanatory. Observational ade-

quacy refers to an approach that provides a description of linguistic facts without
attempting to draw a generalization. A descriptively adequate theory of language
will have as its goal to account for the phenomena of particular languages by for-
mulating a general principle to capture the patterns observed within that language.
A grammar or theory of linguistics is considered explanatorily adequate if it can ex-
plain how this knowledge of the principles of the internal grammar can be acquired
by the speakers. In other words, the goal of generative grammar is to formulate a
common internal structure for the human language faculty and explain how this
internal structure comes into existence in the mind of a speaker.
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quantitative approaches.
Thus, once we realize that the goals of theoretical generative linguis-

tics and of most current computational approaches to language differ,
then it also follows that different goals may require distinct method-
ologies. Accordingly, a computational model concerned about practical
applications and efficient coverage of observable online data would more
readily utilize quantitative methods and large corpora for building the
model.

1.7.2 Theoretical Approaches in Computational Linguistics

It should be pointed out, however, that certain computational ap-
proaches are more concerned with modeling a linguistic theory to test
its hypotheses and predictions than focusing on practical applications
of the system. Researchers working within these approaches, although
rare in the current state of the field, may indeed be interested in de-
veloping a theory of the human language faculty and would fall under
the label of ‘explanatory’ within Chomsky’s classification. I will not be
discussing these approaches in this section but whether these models
use a symbolic, statistical or hybrid approach depends on the type of
data being tested and the theories of language adopted in each case.

For instance, modeling the principles defining the internal structure
of the language computation system within generative grammar would
be symbolic, using the results of the research within theoretical linguis-
tics. On the other hand, a model trying to capture the setting of the
parameters in a language acquisition model might best be captured by
a probabilistic module, taking advantage of naturally occurring spoken
corpora. Whether language should be treated as symbolic in nature or
probabilistic is still an ongoing debate in the theoretical approaches to
the field. For some discussion of the complementary nature of symbolic
and probabilistic methodologies in linguistic theory, see Abney (1996b).

An interesting viewpoint on the rift between symbolic and statis-
tical paradigms, and on the concept of the complementary nature of
the various approaches comes from Robert Simmons, suggesting that
different aspects or perspectives of language are to be investigated with
different methods:

“My own perceptions of the state of computational linguistics dur-
ing that period were given in “On Seeing the Elephant” in the
Finite String, March-April 1972. I saw it as a time of confusion, of
competition among structuralists, transformationalists, and the new
breed of computerniks. “On Seeing the Elephant” was a restatement
of the old Sufi parable that suggested that we each perceived only
isolated parts of our science.” (Simmons, 1982)



May 6, 2003

54 / Karine Megerdoomian

1.7.3 Hybrid Approaches

In recent years, the two approaches within the field of computational
linguistics have become less at odds with each other, and researchers
have begun to search for a coherent combination of the two methodolo-
gies. There is now a consensus within the field that each approach can
provide properties and expertise to achieve their common goals. The
use of corpora has been an integral part of these hybrid systems.

One of the main applications of the statistical methodologies has
been in the domain of disambiguation. Distributional approaches have
demonstrated great success in disambiguating parts-of-speech, subcat-
egorizations, or word senses. Thus, most hybrid approaches have taken
advantage of statistical algorithms to detect the correct parse from a
set of possible ones provided by a symbolic, rule-based system.

Statistical approaches are more robust and show a high degree of er-
ror tolerance. Online textual material often contain errors, misspellings,
foreign language words, as well as structural or agreement mistakes,
e.g., ‘he leave’. A symbolic, rule-based system will not generally be able
to process unknowns or process ungrammatical structures. A statisti-
cal model, however, may still produce a resulting analysis. In addition,
statistical models are better at providing partial parses for linguistic
structures that are missing in the grammar.

On the other hand, most statistical models use some kind of symbolic
and knowledge information in any case. Hence most models assume a
binary branching tree or make use of a language lexicon. It has also
been shown that the addition of knowledge sources usually improves
the results.

Statistical approaches have been often used to acquire knowledge.
For instance, probabilistic algorithms and the availability of large cor-
pora have helped the automated or semi-automated acquisition of lex-
ical knowledge (see section 1.5.1), providing a faster development time
of such knowledge sources.

1.8 Summary

This chapter provides an introduction to corpus linguistics. It begins
with a brief outline of the history of corpus-based analyses within com-
putational linguistics leading to the recent resurgence of interest in
corpus-driven approaches. Various corpus types are defined and cor-
pora resources are presented. The chapter enumerates a number of is-
sues that arise in segmenting a corpus and in determining the word
boundaries in computational linguistic applications. Several corpus an-
notation schemes are discussed, providing general guidelines for design-
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ing tagsets.
A large part of the chapter is dedicated to the various computational

applications in which language corpora play a crucial role. This is, in
essence, the theme that is common throughout all the sections of this
chapter since the application of a project often determines the decisions
made at each step of corpus collection and processing.

The chapter provides an introduction to various tools and programs
used for the analysis of corpora and the performance of text mining.
In addition, guidelines for the testing and evaluation of computational
modules employing annotated corpora are provided. The final section
presents some of the arguments that have led to the recent develop-
ment of hybrid paradigms in computational linguistics by combining
symbolic and statistical methodologies.
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